Cell penetrating peptides (CPPs) are peptides displaying the ability to cross cell membranes and transport cargo molecules inside cells. Several uptake mechanisms (endocytic or direct translocation through the membrane) are being considered, but the interaction between the CPP and the cell membrane is certainly a preliminary key point to the entry of the peptide into the cell. In this study, we used three basic peptides: RL9 (RRLLRRLRR-NH(2)), RW9 (RRWWRRWRR-NH(2)) and R9 (RRRRRRRRR-NH(2)). While RW9 and R9 were internalised into wild type Chinese Hamster Ovary cells (CHO) and glycosaminoglycan-deficient CHO cells, at 4°C and 37°C, RL9 was not internalised into CHO cells. To better understand the differences between RW9, R9 and RL9 in terms of uptake, we studied the interaction of these peptides with model lipid membranes. The effect of the three peptides on the thermotropic phase behaviour of a zwitterionic lipid (DMPC) and an anionic lipid (DMPG) was investigated with differential scanning calorimetry (DSC). The presence of negative charges on the lipid headgroups appeared to be essential to trigger the peptide/lipid interaction. RW9 and R9 disturbed the main phase transition of DMPG, whereas RL9 did not induce significant effects. Isothermal titration calorimetry (ITC) allowed us to study the binding of these peptides to large unilamellar vesicles (LUVs). RW9 and R9 proved to have about ten fold more affinity for DSPG LUVs than RL9. With circular dichroism (CD) and NMR spectroscopy, the secondary structure of RL9, RW9 and R9 in aqueous buffer or lipid/detergent conditions was investigated. Additionally, we tested the antimicrobial activity of these peptides against Escherichia coli and Staphylococcus aureus, as CPPs and antimicrobial peptides are known to share several common characteristics. Only RW9 was found to be mildly bacteriostatic against E. coli. These studies helped us to get a better understanding as to why R9 and RW9 are able to cross the cell membrane while RL9 remains bound to the surface without entering the cell.
Because issues of cost and bioavailability have hampered the development of gene-encoded antimicrobial peptides to combat infectious diseases, short linear peptides with high microbial cell selectivity have been recently considered as antibiotic substitutes. A new type of short antimicrobial peptide, designated temporin-SHf, was isolated and cloned from the skin of the frog Pelophylax saharica. Temporin-SHf has a highly hydrophobic sequence (FFFLSRIFa) and possesses the highest percentage of Phe residues of any known peptide or protein. Moreover, it is the smallest natural linear antimicrobial peptide found to date, with only eight residues. Despite its small size and hydrophobicity, temporin-SHf has broad-spectrum microbicidal activity against Gram-positive and Gram-negative bacteria and yeasts, with no hemolytic activity. CD and NMR spectroscopy combined with restrained molecular dynamics calculations showed that the peptide adopts a well defined non-amphipathic ␣-helical structure from residue 3 to 8, when bound to zwitterionic dodecyl phosphocholine or anionic SDS micelles. Relaxation enhancement caused by paramagnetic probes showed that the peptide adopts nearly parallel orientations to the micelle surface and that the helical structure is stabilized by a compact hydrophobic core on one face that penetrates into the micelle interior. Differential scanning calorimetry on multilamellar vesicles combined with membrane permeabilization assays on bacterial cells indicated that temporin-SHf disrupts the acyl chain packing of anionic lipid bilayers, thereby triggering local cracks and microbial membrane disintegration through a detergent-like effect probably via the carpet mechanism. The short length, compositional simplicity, and broad-spectrum activity of temporin-SHf make it an attractive candidate to develop new antibiotic agents.
The overlapping biological behaviors between some cell penetrating peptides (CPPs) and antimicrobial peptides (AMPs) suggest both common and different membrane interaction mechanisms. We thus explore the capacity of selected CPPs and AMPs to reorganize the planar distribution of binary lipid mixtures by means of differential scanning calorimetry (DSC). Additionally, membrane integrity assays and circular dichroism (CD) experiments were performed. Two CPPs (Penetratin and RL16) and AMPs belonging to the dermaseptin superfamily (Drs B2 and C-terminal truncated analog [1-23]-Drs B2 and two plasticins DRP-PBN2 and DRP-PD36KF) were selected. Herein we probed the impact of headgroup charges and acyl chain composition (length and unsaturation) on the peptide/lipid interaction by using binary lipid mixtures. All peptides were shown to be alpha-helical in all the lipid mixtures investigated, except for the two CPPs and [1-23]-Drs B2 in the presence of zwitterionic lipid mixtures where they were rather unstructured. Depending on the lipid composition and peptide sequence, simple binding to the lipid surface that occur without affecting the lipid distribution is observed in particular in the case of AMPs. Recruitments and segregation of lipids were observed, essentially for CPPs, without a clear relationship between peptide conformation and their effect in the lipid lateral organization. Nonetheless, in most cases after initial electrostatic recognition between the peptide charged amino acids and the lipid headgroups, the lipids with the lowest phase transition temperature were selectively recruited by cationic peptides while those with the highest phase transition were segregated. Membrane activities of CPPs and AMPs could be thus related to their preferential interactions with membrane defects that correspond to areas with marked fluidity. Moreover, due to the distinct membrane composition of prokaryotes and eukaryotes, lateral heterogeneity may be differently affected by cationic peptides leading to either uptake or/and antimicrobial activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.