Modern MRI measurements deliver volumetric and time‐varying blood‐flow data of unprecedented quality. Visual analysis of these data potentially leads to a better diagnosis and risk assessment of various cardiovascular diseases. Recent advances have improved the speed and quality of the imaging data considerably. Nevertheless, the data remains compromised by noise and a lack of spatiotemporal resolution. Besides imaging data, also numerical simulations are employed. These are based on mathematical models of specific features of physical reality. However, these models require realistic parameters and boundary conditions based on measurements. We propose to use data assimilation to bring measured data and physically‐based simulation together, and to harness the mutual benefits. The accuracy and noise robustness of the coupled approach is validated using an analytic flow field. Furthermore, we present a comparative visualization that conveys the differences between using conventional interpolation and our coupled approach.
Phase‐Contrast Magnetic Resonance Imaging (PC‐MRI) surpasses all other imaging methods in quality and completeness for measuring time‐varying volumetric blood flows and has shown potential to improve both diagnosis and risk assessment of cardiovascular diseases. However, like any measurement of physical phenomena, the data are prone to noise, artefacts and has a limited resolution. Therefore, PC‐MRI data itself do not fulfil physics fluid laws making it difficult to distinguish important flow features. For data analysis, physically plausible and high‐resolution data are required. Computational fluid dynamics provides high‐resolution physically plausible flows. However, the flow is inherently coupled to the underlying anatomy and boundary conditions, which are difficult or sometimes even impossible to adequately model with current techniques. We present a novel methodology using data assimilation techniques for PC‐MRI noise and artefact removal, generating physically plausible flow close to the measured data. It also allows us to increase the spatial and temporal resolution. To avoid sensitivity to the anatomical model, we consider and update the full 3D velocity field. We demonstrate our approach using phantom data with various amounts of induced noise and show that we can improve the data while preserving important flow features, without the need of a highly detailed model of the anatomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.