The overhead transmission line system is one of the methods of transmitting electrical energy at a high voltage from one point to another, especially over long distances. The demand for electrical energy is increasing due to the increase in the world population, the evolution of transport technology, and economic expansion, thereby resulting in overloading to the overhead line (OHL) system. In building new infrastructure for transmission lines, several issues need to be addressed. Thus, optimizing existing power by increasing the ampacity of power line is a practical solution to meet energy demand issues. During long-term operation, the temperature of OHL conductors may increase beyond their rated temperature, which is typically 75 °C for conventional conductors such as aluminum-conductor steel-reinforced cable. This condition is defined as thermal stress, which results in lower sag vertical clearance, tensile loss, elongation and creep, and reduced life span of the conductors. This condition must be avoided to ensure that the line is not permanently elongated, which can disrupt the vertical ground clearance, and to expand the conductor's life. Other factors such as lightning, wildfire, aging, and degradation of the conductor can also cause thermal stress on the conductors and have thermal effects on the conductor's performance. Therefore, unwanted thermal stress needs to be examined and identified by monitoring the thermal effect and behavior of the lines. This paper presents the state of the art in monitoring technologies that can be used to identify thermal stress on OHL conductors, including the issues and challenges in monitoring. At the end of this paper, a few suggestions are included to address the occurrence and assessment of thermal stress in lines. Ultimately, this work may provide complete information to researchers and maintenance engineers to enable them to make better decisions on condition monitoring, operation, and maintenance of the system. INDEX TERMS Overhead transmission line, thermal rating, conductor temperature, thermal stress effect, conditioning monitoring.
Multi-level transformerless inverters are widely used in grid-tied PV systems since they characterized by higher efficiency and lower cost. In this context, new topologies, modulation, and control schemes were presented to solve problems of a common-mode voltage and leakage current. This work proposes a transformerless five-level inverter with zero leakage current and ability to reduce the harmonic output content for a grid-tied single-phase PV system. The neutral of the grid links to a common on which the negative and the positive terminals of the DC-link are connected via parasitic capacitors that can eliminate the leakage current. The proposed topology, with its inherent circuit structure, leads to boost the overall efficiency. Simulation and experimental results show almost zero leakage current and a high-quality output when maintaining balanced capacitor voltages on the DC-link input. The experimental results show 1.07% THD and 96.3 % maximum efficiency when injecting a power of 1.1 kW that verify the performance of the proposed inverter with PV sources. INDEX TERMS IGBT inverters, transformerless grid-connected photovoltaic inverter, solar PV.
Periodic preventive maintenance of power transformer should be conducted for its health monitoring and early fault detection. Transformer oil is a vital element where its contents and properties need to be monitored during the service life of a power transformer. This paper presents an optical spectroscopy measurement from 200 nm to 3300 nm to characterize the transformer oil, which were sampled from the main tanks and 'on-load tap changer' of power transformers. The correlation of the optical characteristics in the range of 2120 nm to 2220 nm to the Dissolved Gas Analysis results and Duval Triangle interpretation demonstrates that the low energy electrical discharges, high energy electrical discharges as well as the thermal faults rated at temperatures above 700 • C in power transformers can be accurately predicted. For faster and accurate analysis of fault prediction, a data mining analytics tool was constructed using Rapid Miner server to analyze and verify the predictions for a total of 108 oil samples. For the optimization, continuous iterations were performed to determine the best absorbance-wavelength combination that can improve the accuracy of the prediction. The performance of the optical spectroscopy technique integrated with data analytic tool was analyzed and it was found that the technique contributes to a high accuracy of 98.1% in fault prediction. It is a cost-effective and quicker complementing approach to carry out pre-screening of the transformer oil in order to know the condition of the power transformers based on the transformer oil's optical characteristics.INDEX TERMS Data mining, fault prediction, optical spectroscopy, power transformers, transformer oil.
Earthing system is very important in order to protect the electrical equipment as well as the human’s safety against over voltages. The main function of the earthling system is to remove unwanted excessive electrical currents caused by unusual conditions such as fault and lightning or switching over voltages by providing a low resistance path to the earth. Researchers had studied the behaviour of the earthling system to improve its performance for the past few years. There are few factors that influence the performance of the earthling system such as soil resistivity and soil ionization which need to be focused in order to improve the earthling. Thus, this paper evaluates on the factors that affect the behaviour of the earthling system based on simulation works using MATLAB and Safe Grid Software. Some analytical calculations are used to obtain the soil resistivity and resistance as well as the touch and step voltages. The simulation results were validated based on comparison with other studies on the factors that influence the earthling system performance. The results reveal that the variation of soil resistivity, the configuration of electrodes, current magnitude and frequency dependence can result in a change of transient response of the systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.