The Sex-lethal (Sxl) protein of Drosophila melanogaster regulates alternative splicing of the transformer (tra) messenger RNA precursor by binding to the tra polypyrimidine tract during the sex-determination process. The crystal structure has now been determined at 2.6 A resolution of the complex formed between two tandemly arranged RNA-binding domains of the Sxl protein and a 12-nucleotide, single-stranded RNA derived from the tra polypyrimidine tract. The two RNA-binding domains have their beta-sheet platforms facing each other to form a V-shaped cleft. The RNA is characteristically extended and bound in this cleft, where the UGUUUUUUU sequence is specifically recognized by the protein. This structure offers the first insight, to our knowledge, into how a protein binds specifically to a cognate RNA without any intramolecular base-pairing.
The epidermal growth factor receptor (EGFR) has an essential role in multiple signaling pathways, including cell proliferation and migration, through extracellular ligand binding and subsequent activation of its intracellular tyrosine kinase (TK) domain. The non-small cell lung cancer (NSCLC)-associated EGFR mutants, L858R and G719S, are constitutively active and oncogenic. They display sensitivity to TK inhibitors, including gefitinib and erlotinib. In contrast, the secondary mutation of the gatekeeper residue, T790M, reportedly confers inhibitor resistance on the oncogenic EGFR mutants. In this study, our biochemical analyses revealed that the introduction of the T790M mutation confers gefitinib resistance on the G719S mutant. The G719S/T790M double mutant has enhanced activity and retains high gefitinib-binding affinity. The T790M mutation increases the ATP affinity of the G719S mutant, explaining the acquired drug resistance of the double mutant. Structural analyses of the G719S/T790M double mutant, as well as the wild type and the G719S and L858R mutants, revealed that the T790M mutation stabilizes the hydrophobic spine of the active EGFR-TK conformation. The Met790 side chain of the G719S/T790M double mutant, in the apo form and gefitinib- and AMPPNP-bound forms, adopts different conformations that explain the accommodation of these ligands. In the L858R mutant structure, the active-site cleft is expanded by the repositioning of Phe723 within the P-loop. Notably, the introduction of the F723A mutation greatly enhanced the gefitinib sensitivity of the wild-type EGFR in vivo, supporting our hypothesis that the expansion of the active-site cleft results in enhanced gefitinib sensitivity. Taken together, our results provide a structural basis for the altered drug sensitivities caused by distinct NSCLC-associated EGFR mutations.
ADP-ATP exchange by the molecular chaperone Hsp70 is enhanced by several cochaperones. BAG5 consists of five BAG domains and associates with the nucleotide-binding domain (NBD) of Hsp70. The overexpression of BAG5 in the cytosol reportedly disturbs Hsp70-mediated protein refolding and induces Parkinson's disease. In the present study, we found that the fifth BAG domain (BD5) of BAG5 is responsible for the interaction between Hsp70 and BAG5. We also determined the crystal structures of the BD5*NBD complex. BD5 binding caused two different types of NBD conformational changes, which both disrupted the nucleotide-binding groove. In fact, BD5 reduced the affinity of the NBD for ADP. Moreover, BD5, as well as the full-length BAG5, accelerated Hsp70-mediated refolding in an in vitro assay. Therefore, BAG5 can function as the nucleotide exchange factor of Hsp70 for the enhancement of protein refolding.
Cyclic nucleotide phosphodiesterases (PDEs) catalyze the degradation of the cyclic nucleotides cAMP and cGMP, which are important second messengers. Five of the 11 mammalian PDE families have tandem GAF domains at their N termini. PDE10A may be the only mammalian PDE for which cAMP is the GAF domain ligand, and it may be allosterically stimulated by cAMP. PDE10A is highly expressed in striatal medium spiny neurons. Here we report the crystal structure of the C-terminal GAF domain (GAF-B) of human PDE10A complexed with cAMP at 2.1-Å resolution. The conformation of the PDE10A GAF-B domain monomer closely resembles those of the GAF domains of PDE2A and the cyanobacterium Anabaena cyaB2 adenylyl cyclase, except for the helical bundle consisting of ␣1, ␣2, and ␣5. The PDE10A GAF-B domain forms a dimer in the crystal and in solution. The dimerization is mainly mediated by hydrophobic interactions between the helical bundles in a parallel arrangement, with a large buried surface area. In the PDE10A GAF-B domain, cAMP tightly binds to a cNMP-binding pocket. The residues in the ␣3 and ␣4 helices, the 6 strand, the loop between 3 10 and ␣4, and the loop between ␣4 and 5 are involved in the recognition of the phosphate and ribose moieties. This recognition mode is similar to those of the GAF domains of PDE2A and cyaB2. In contrast, the adenine base is specifically recognized by the PDE10A GAF-B domain in a unique manner, through residues in the 1 and 2 strands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.