Facial recognition is one of the most successful applications of image analysis and understanding. This paper presents a Principal Component Analysis (PCA) and eigenface method for facial feature extraction. Several performance metrics, i.e. accuracy, precision, and recall are taken into account as a baseline of experiment. Furthermore, two public data sets, namely SOF (Speech on faces) and MIT CBCL Facerec are incorporated in the experiment. Based on our experimental result, it can be revealed that PCA has performed well in terms of accuracy, precision, and recall metrics by 0.598, 0.63, and 0.598, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.