Context. Understanding stellar activity in solar-type stars is crucial for the physics of stellar atmospheres as well as for ongoing exoplanet programmes. Aims. We aim to test how well we understand stellar activity using our own star, the Sun, as a test case. Methods. We perform a detailed study of the main optical activity indicators (Ca ii H & K, Balmer lines, Na i D 1 D 2 , and He i D 3 ) measured for the Sun using the data provided by the HARPS-N solar-telescope feed at the Telescopio Nazionale Galileo. We make use of periodogram analyses to study solar rotation, and we use the pool variance technique to study the temporal evolution of active regions. The correlations between the different activity indicators as well as the correlations between activity indexes and the derived parameters from the cross-correlation technique are analysed. We also study the temporal evolution of these correlations and their possible relationship with indicators of inhomogeneities in the solar photosphere like sunspot number or radio flux values. Results. The value of the solar rotation period is found in all the activity indicators, with the only exception being Hδ. The derived values vary from 26.29 days (Hγ line) to 31.23 days (He i). From an analysis of sliding periodograms we find that in most of the activity indicators the spectral power is split into several "bands" of periods around 26 and 30 days, that might be explained by the migration of active regions between the equator and a latitude of ∼ 30 • , spot evolution or a combination of both effects. In agreement with previous works a typical lifetime of active regions of ∼ ten rotation periods is inferred from the pooled variance diagrams. We find that Hα, Hβ, Hγ, H , and He i show a significant correlation with the S index. Significant correlations between the contrast, bisector span, and the heliocentric radial velocity with the activity indexes are also found. We show that the full width at half maximum, the bisector, and the disc-integrated magnetic field correlate with the radial velocity variations. The correlation of the S index and Hα changes with time, increasing with larger sun spot numbers and solar irradiance. A similar tendency with the S index -radial velocity correlation is also present in the data. Conclusions. Our results are consistent with a scenario in which higher activity favours the correlation between the S index and the Hα activity indicators and between the S index and radial velocity variations.
Since 2012, thanks to the installation of the high resolution echelle spectrograph in the optical range HARPS-N, the Italian telescope TNG (La Palma) became one of the key facilities for the study of the extrasolar planets. In 2014 TNG also offered GIANO to the scientific community, providing a near-infrared (NIR) cross-dispersed echelle spectroscopy covering 0.97 − 2.45 µm at a resolution of 50,000. GIANO, although designed for direct light-feed from the telescope at the Nasmyth-B focus, was provisionally mounted on the rotating building and connected via fibers to only available interface at the Nasmyth-A focal plane. The synergy between these two instruments is particularly appealing for a wide range of science cases, especially for the search of exoplanets around young and active stars and the characterisation of their atmosphere. Through the funding scheme "WOW" (a Way to Others Worlds), the Italian National Institute for Astrophysics (INAF) proposed to position GIANO at the focal station for which it was originally designed and the simultaneous use of these spectrographs with the aim to achieve high-resolution spectroscopy in a wide wavelength range (0.383 − 2.45 µm) obtained in a single exposure, giving rise to the project called GIARPS (GIANO-B & HARPS-N). Because of its characteristics GIARPS can be considered the first and unique worldwide instrument providing not only high resolution in a large wavelength band, but also a high precision radial velocity measurement both in the visible and in the NIR arm, since in the next future GIANO-B will be equipped with gas absorption cells.
Context. Stellar activity is currently challenging the detection of young planets via the radial velocity (RV) technique. Aims. We attempt to definitively discriminate the nature of the RV variations for the young active K5 star BD+20 1790, for which visible (VIS) RV measurements show divergent results on the existence of a substellar companion. Methods. We compare VIS data with high precision RVs in the near infrared (NIR) range by using the GIANO -B and IGRINS spectrographs. In addition, we present for the first time simultaneous VIS-NIR observations obtained with GIARPS (GIANO -B and HARPS -N) at Telescopio Nazionale Galileo (TNG). Orbital RVs are achromatic, so the RV amplitude does not change at different wavelengths, while stellar activity induces wavelength-dependent RV variations, which are significantly reduced in the NIR range with respect to the VIS. Results. The NIR radial velocity measurements from GIANO -B and IGRINS show an average amplitude of about one quarter with respect to previously published VIS data, as expected when the RV jitter is due to stellar activity. Coeval multi-band photometry surprisingly shows larger amplitudes in the NIR range, explainable with a mixture of cool and hot spots in the same active region. Conclusions. In this work, the claimed massive planet around BD+20 1790 is ruled out by our data. We exploited the crucial role of multiwavelength spectroscopy when observing young active stars: thanks to facilities like GIARPS that provide simultaneous observations, this method can reach its maximum potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.