Context. The evolution of magnetic fields in Ap stars during the main sequence phase is presently mostly unconstrained by observation because of the difficulty of assigning accurate ages to known field Ap stars. Aims. We are carrying out a large survey of magnetic fields in cluster Ap stars with the goal of obtaining a sample of these stars with well-determined ages. In this paper we analyse the information available from the survey as it currently stands. Methods. We select from the available observational sample the stars that are probably (1) cluster or association members and (2) magnetic Ap stars. For the stars in this subsample we determine the fundamental parameters T eff , L/L , and M/M . With these data and the cluster ages we assign both absolute age and fractional age (the fraction of the main sequence lifetime completed). For this purpose we have derived new bolometric corrections for Ap stars. Results. Magnetic fields are present at the surfaces of Ap stars from the ZAMS to the TAMS. Statistically for the stars with M > 3 M the fields decline with advancing age approximately as expected from flux conservation together with increased stellar radius, or perhaps even faster than this rate, on a time scale of about 3 × 10 7 yr. In contrast, lower mass stars show no compelling evidence for field decrease even on a timescale of several times 10 8 yr. Conclusions. Study of magnetic cluster stars is now a powerful tool for obtaining constraints on evolution of Ap stars through the main sequence. Enlarging the sample of known cluster magnetic stars, and obtaining more precise rms fields, will help to clarify the results obtained so far. Further field observations are in progress.
Context. About 5% of upper main sequence stars are permeated by a strong magnetic field, the origin of which is still matter of debate. Aims. With this work we provide observational material to study how magnetic fields change with the evolution of stars on the main sequence, and to constrain theory explaining the presence of magnetic fields in A and B-type stars. Methods. Using FORS1 in spectropolarimetric mode at the ESO VLT, we have carried out a survey of magnetic fields in early-type stars belonging to open clusters and associations of various ages. Results. We have measured the magnetic field of 235 early-type stars with a typical uncertainty of ∼100 G. In our sample, 97 stars are Ap or Bp stars. For these targets, the median error bar of our field measurements was ∼80 G. A field has been detected in about 41 of these stars, 37 of which were not previously known as magnetic stars. For the 138 normal A and B-type stars, the median error bar was 136 G, and no field was detected in any of them.
Context. A small fraction of upper main sequence stars have strong, highly structured magnetic fields. The origin and evolution of these fields are not adequately understood. Aims. We are carrying out a survey of magnetic fields in Ap stars in open clusters in order to obtain the first sample of magnetic upper main sequence stars with precisely known ages. These data will constrain theories of field evolution in these stars. Methods. A survey of candidate open cluster magnetic Ap stars was carried out using the new ESPaDOnS spectropolarimeter at the CFHT. This instrument provides an alternative to the FORS1 spectropolarimeter used up to now for this survey. Results. We have obtained 44 measurements of the mean longitudinal fields B z of 23 B6-A2 stars that have been identified as possible Ap stars and that are possible members of open clusters, with a median uncertainty of about 45 G. Of these stars, 10 have definite field detections. Nine stars of our sample are found not to be magnetic Ap stars. These observations significantly increase the information available about low-mass stars near the TAMS compared to our previous sample. Conclusions. We find that ESPaDOnS provides field measurements comparable to those that we have previously obtained with FORS1, and that these data also contain a large amount of useful information not readily obtained from lower resolution spectropolarimetry. With the new data we are able to expand the available data on low-mass, relatively evolved Ap stars, and identify more robustly which observed stars are actually magnetic Ap stars and cluster members. Re-analysis of the enlarged data set of cluster Ap stars indicates that such stars with masses in the range of 2-5 M show rms fields larger than about 1 kG only when they are near the ZAMS. The time scale on which these large fields disappear varies strongly with mass, ranging from about 250 Myr for stars of 2-3 M to 15 Myr for stars of 4-5 M . Our data are consistent either with emergent flux conservation for most (but not all) Ap stars, or with modest decline in flux with age.
We present the lessons learned about the degradation observed in several space solar missions, based on contributions at the Workshop about OnOrbit Degradation of Solar and Space Weather Instruments that took place at the Solar Terrestrial Centre of Excellence (Royal Observatory of Belgium) in Brussels on 3 May 2012. The aim of this workshop was to open discussions related to the degradation observed in Sun-observing instruments exposed to the effects of the space environment. This article summarizes the various lessons learned and offers recommendations to reduce or correct expected degradation with the goal of increasing the useful lifespan of future and ongoing space missions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.