During Biogenic Aerosols—Effects on Clouds and Climate (BAECC), the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program deployed the Second ARM Mobile Facility (AMF2) to Hyytiälä, Finland, for an 8-month intensive measurement campaign from February to September 2014. The primary research goal is to understand the role of biogenic aerosols in cloud formation. Hyytiälä is host to the Station for Measuring Ecosystem–Atmosphere Relations II (SMEAR II), one of the world’s most comprehensive surface in situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions, and an extensive suite of parameters relevant to atmosphere–biosphere interactions continuously since 1996. Combining vertical profiles from AMF2 with surface-based in situ SMEAR II observations allows the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. Together with the inclusion of extensive surface precipitation measurements and intensive observation periods involving aircraft flights and novel radiosonde launches, the complementary observations provide a unique opportunity for investigating aerosol–cloud interactions and cloud-to-precipitation processes in a boreal environment. The BAECC dataset provides opportunities for evaluating and improving models of aerosol sources and transport, cloud microphysical processes, and boundary layer structures. In addition, numerical models are being used to bridge the gap between surface-based and tropospheric observations.
Using a nonhydrostatic numerical model with horizontal grid spacing of 24 km and nested grids of 6- and 3-km spacing, the authors employ the scaled lagged average forecasting (SLAF) technique, developed originally for global and synoptic-scale prediction, to generate ensemble forecasts of a tornadic thunderstorm complex that occurred in north-central Texas on 28–29 March 2000. This is the first attempt, to their knowledge, in applying ensemble techniques to a cloud-resolving model using radar and other observations assimilated within nonhorizontally uniform initial conditions and full model physics. The principal goal of this study is to investigate the viability of ensemble forecasting in the context of explicitly resolved deep convective storms, with particular emphasis on the potential value added by fine grid spacing and probabilistic versus deterministic forecasts. Further, the authors focus on the structure and growth of errors as well as the application of suitable quantitative metrics to assess forecast skill for highly intermittent phenomena at fine scales. Because numerous strategies exist for linking multiple nested grids in an ensemble framework with none obviously superior, several are examined, particularly in light of how they impact the structure and growth of perturbations. Not surprisingly, forecast results are sensitive to the strategy chosen, and owing to the rapid growth of errors on the convective scale, the traditional SLAF methodology of age-based scaling is replaced by scaling predicated solely upon error magnitude. This modification improves forecast spread and skill, though the authors believe errors grow more slowly than is desirable. For all three horizontal grid spacings utilized, ensembles show both qualitative and quantitative improvement relative to their respective deterministic control forecasts. Nonetheless, the evolution of convection at 24- and 6-km spacings is vastly different from, and arguably inferior to, that at 3 km because at 24-km spacing, the model cannot explicitly resolve deep convection while at 6 km, the deep convection closure problem is ill posed and clouds are neither implicitly nor explicitly represented (even at 3-km spacing, updrafts and downdrafts only are marginally resolved). Despite their greater spatial fidelity, the 3-km grid spacing experiments are limited in that the ensemble mean reflectivity tends to be much weaker in intensity, and much broader in aerial extent, than that of any single 3-km spacing forecast owing to amplitude reduction and spatial smearing that occur when averaging is applied to spatially intermittent phenomena. The ensemble means of accumulated precipitation, on the other hand, preserve peak intensity quite well. Although a single case study obviously does not provide sufficient information with which to draw general conclusions, the results presented here, as well as those in Part II (which focuses solely on 3-km grid spacing experiments), suggest that even a small ensemble of cloud-resolving forecasts may provide greater skill, and greater practical value, than a single deterministic forecast using either the same or coarser grid spacing.
No abstract
In Part I, the authors used a full physics, nonhydrostatic numerical model with horizontal grid spacing of 24 km and nested grids of 6- and 3-km spacing to generate the ensemble forecasts of an observed tornadic thunderstorm complex. The principal goal was to quantify the value added by fine grid spacing, as well as the assimilation of Doppler radar data, in both probabilistic and deterministic frameworks. The present paper focuses exclusively on 3-km horizontal grid spacing ensembles and the associated impacts on the forecast quality of temporal forecast sequencing, the construction of initial perturbations, and data assimilation. As in Part I, the authors employ a modified form of the scaled lagged average forecasting technique and use Stage IV accumulated precipitation estimates for verification. The ensemble mean and spread of accumulated precipitation are found to be similar in structure, mimicking their behavior in global models. Both the assimilation of Doppler radar data and the use of shorter (1–2 versus 3–5 h) forecast lead times improve ensemble precipitation forecasts. However, even at longer lead times and in certain situations without assimilated radar data, the ensembles are able to capture storm-scale features when the associated control forecast in a deterministic framework fails to do so. This indicates the potential value added by ensembles although this single case is not sufficient for drawing general conclusions. The creation of initial perturbations using forecasts of the same grid spacing shows no significant improvement over simply extracting perturbations from forecasts made at coarser spacing and interpolating them to finer grids. However, forecast quality is somewhat dependent upon perturbation amplitude, with smaller scaling values leading to significant underdispersion. Traditional forecast skill scores show somewhat contradictory results for accumulated precipitation, with the equitable threat score most consistent with qualitative performance.
Boreal forest acts as a carbon sink and contributes to the formation of secondary organic aerosols via emission of aerosol precursor compounds. However, these influences on the climate system are poorly quantified. Here we show direct observational evidence that aerosol emissions from the boreal forest biosphere influence warm cloud microphysics and cloud-aerosol interactions in a scale-dependent and highly dynamic manner. Analyses of in-situ and ground-based remote sensing observations from the SMEAR II station in Finland, conducted over eight months in 2014, reveal significant increases in aerosol load over the forest one to three days after aerosol-poor marine air enters the forest environment.We find that these changes are consistent with secondary organic aerosol formation and, together with water vapor emissions from evapotranspiration, are associated with changes in the radiative properties of warm, low-level clouds. The feedbacks between boreal forest emissions and aerosol-cloud interactions and the highly dynamic nature of these Petäjä et al. (2021) Influence of biogenic emissions from boreal forests on aerosol-cloud-interactions, Nature Geosci. (accepted)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.