Under iron-deficient conditions a high-affinity siderophore-mediated iron-transport system is induced in the green alga Scenedesmus incrassatulus R-83. Algal siderophores have a strong avidity for ferric versus ferrous iron, quickly oxidate Fe n and efficiently solubilize FdII hydroxides. The entire ferrated molecule is translocated across the membrane by the specific transport system. The iron-uptake rate in Fe-deficient cells is higher at higher pH adjusted with bicarbonate in the medium, suggesting the presence of an inducible membrane-bound "translocator". The iron-reduction step is not involved in uptake of ferrated siderophores. The total absorbed iron from siderophores is high and does not strongly depend on the nutritional status of cells, showing that the critical step for iron uptake is siderophore secretion rather than the membrane-bound iron-transport system.
The effects of different temperatures and light intensities on growth, pigments, sugars, lipids, and proteins, as well as on some antioxidant and proteolytic enzymes of Trachydiscus minutus (Bourr.) H. Ettl, were investigated. The optimum growth temperature and light intensity were 25°C and 2 × 132 μmol photons · m(-2 ) · s(-1) , respectively. Under these conditions, proteins were the main biomass components (33.45% dry weight [dwt]), with high levels of carbohydrates (29% dwt) and lipids (21.77% dwt). T. minutus tolerated temperatures between 20°C and 32°C, with only moderate changes in cell growth and biochemical composition. Extremely low (15°C) and high (40°C) temperatures decreased chl and RUBISCO contents and inhibited cell growth. The biochemical response of the alga to both unfavorable conditions was an increase in lipid content (up to 35.19% dwt) and a decrease in carbohydrates (down to 13.64% dwt) with much less of a change in total protein content (in the range of 30.51%-38.13% dwt). At the same time, the defense system of T. minutus was regulated differently in response to heat or cold treatments. Generally, at 40°C, the activities of superoxide dismutase (SOD), catalase (CAT), and proteases were drastically elevated, and three polypeptides were overexpressed, whereas the glutathione reductase (GR) and peroxidase (POD) activities were reduced. In contrast, at 15°C, all these enzymes except GR were suppressed. The effect of light was to enhance or decrease the temperature stress responses, depending on intensity. Our studies demonstrate the broad temperature adaptability of T. minutus as well as the potential for the production of valuable algal biomass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.