The present work encompasses the impact of temperature (450, 500, 550, 600 °C) on the properties of pyrolysis oil and on other product yield for the co-pyrolysis of Polypropylene (PP) plastics and rice straw. Co-pyrolysis of PP plastic and rice straw were conducted in a fixed-bed drop type pyrolyzer under an inert condition to attain maximum oil yield. Physically, the pyrolysis oil is dark-brown in colour with free flowing and has a strong acrid smell. Copyrolysis between these typically obtained in maximum pyrolysis oil yields up to 69% by ratio 1:1 at a maximum temperature of 550 °C. From the maximum yield of pyrolysis oil, characterization of pyrolysis product and effect of biomass type of the composition were evaluated. Pyrolysis oil contains a high water content of 66.137 wt.%. Furfural, 2- methylnaphthalene, tetrahydrofuran (THF), toluene and acetaldehyde were the major organic compounds found in pyrolysis oil of rice straw mixed with PP. Bio-char collected from co-pyrolysis of rice straw mixed with PP plastic has high calorific value of 21.190 kJ/g and also carbon content with 59.02 wt.% and could contribute to high heating value. The non-condensable gases consist of hydrogen, carbon monoxide, and methane as the major gas components.
Co-pyrolysis of rubberwood sawdust (RWS) waste and polypropylene (PP) was carried out at different temperatures (450,500,550, and 600°C) with biomass to plastics ratio 1:1 by using fixed bed drop-type pyrolyzer. The yield of pyrolysis oil has an increasing trend as the temperature increased from 450°C to 550°C. However, the pyrolysis oil yield dropped at a temperature of 600°C. Co-pyrolysis of RWS and PP generated maximum pyrolysis oil with 36.47 wt.% at 550°C. The result is compared with the pyrolysis of RWS only without plastics, with the same feedstock, and the maximum pyrolysis oil yield obtained was 33.3 wt.%. The water content in pyrolysis oil of co-pyrolysis RWS with PP is lower than RWS only with 54.2 wt.% and 62 wt.% respectively. Hydrocarbons, acyclic olefin, alkyl, and aromatic groups are the major compound in the pyrolysis oil from the co-pyrolysis process. Carbon monoxide (52.2 vol.%) and carbon dioxide (38.2 vol.%) are the major gas components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.