The continuous molecular fields (CMF) approach is based on the application of continuous functions for the description of molecular fields instead of finite sets of molecular descriptors (such as interaction energies computed at grid nodes) commonly used for this purpose. These functions can be encapsulated into kernels and combined with kernel-based machine learning algorithms to provide a variety of novel methods for building classification and regression structure-activity models, visualizing chemical datasets and conducting virtual screening. In this article, the CMF approach is applied to building 3D-QSAR models for 8 datasets through the use of five types of molecular fields (the electrostatic, steric, hydrophobic, hydrogen-bond acceptor and donor ones), the linear convolution molecular kernel with the contribution of each atom approximated with a single isotropic Gaussian function, and the kernel ridge regression data analysis technique. It is shown that the CMF approach even in this simplest form provides either comparable or enhanced predictive performance in comparison with state-of-the-art 3D-QSAR methods.
The fact of the fracture of the extraction curve of lanthanides by 1,10-phenanthroline-2,9-diamides is explained in terms of the structure of complexes, solvent extraction data and quantum chemical calculations. The solvent extraction proceeds in two competing directions: in the form of neutral complexes LLn(NO3)3 and in the form of tight ion pairs {[LLn(NO3)2 H2O]+ (NO3−).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.