With the rapid growth of mobile networks, the radio access network becomes more and more costly to deploy, operate, maintain and upgrade. The most effective answer to this problem lies in the centralization and virtualization of the eNodeBs. This solution is known as Cloud RAN and is one of the key topics in the development of fifth generation networks. Within this context OpenAirInterface is a promising emulation tool that can be used for prototyping innovative scheduling algorithms, making the most of the new architecture. In this work we first describe the emulation environment of OpenAirInterface and its scheduling framework and we use it to implement two MAC schedulers. Moreover we validate the above schedulers and we perform a thorough profiling of OpenAirInterface, in terms of both memory occupancy and execution time. Our results show that OpenAirInterface can be effectively used for prototyping scheduling algorithms in emulated LTE networks
Using Coordinated Scheduling (CS), eNodeBs in a cellular network dynamically agree on which Resource Blocks (not) to use, so as to reduce the interference, especially for celledge users. This paper describes a software framework that allows dynamic CS to occur among a relatively large number of nodes, as part of a more general framework of network management devised within the Flex5Gware project. The benefits of dynamic CS, in terms of spectrum efficiency and resource saving, are illustrated by means of simulation and with live measurements on a prototype implementation using virtualized eNodeBs.
This paper describes the software architecture and the implementation of a fully operational testbed that demonstrates the benefits of flexible, dynamic resource allocation with virtualized LTE-A nodes. The testbed embodies and specializes the general software architecture devised within the Flex5Gware EU project, and focuses on two intelligent programs: the first one is a Global Scheduler, that coordinates radio resource allocation among interfering nodes; the second one is a Global Power Manager, which switches on/off nodes based on their expected and measured load over a period of minutes. The software framework is written using open-source software, and includes fast, scalable optimization algorithms at both components. Moreover, it supports virtualized BaseBand Units, implemented using OpenAir-Interface, that can run on physical and virtual machines. We present the results obtained via on-field measurements, that demonstrate the feasibility and benefits of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.