Most control charts require the assumption of normal distribution for observations. When distribution is not normal, one can use non-parametric control charts such as sign control chart. A deficiency of such control charts could be the loss of information due to replacing an observation with its sign or rank. Furthermore, because the chart statistics of T 2 are correlated, the T 2 chart is not a desire performance. Non-parametric bootstrap algorithm could help to calculate control chart parameters using the original observations while no assumption regarding the distribution is needed. In this paper, first, a bootstrap multivariate control chart is presented based on Hotelling's T 2 statistic then the performance of the bootstrap multivariate control chart is compared to a Hotelling's T 2 parametric multivariate control chart, a multivariate sign control chart, and a multivariate Wilcoxon control chart using a simulation study. Ultimately, the bootstrap multivariate control chart is used in an empirical example to study the process of sugar production.
Various charts such as |S|, W, and G are used for monitoring process dispersion. Most of these charts are based on the normality assumption, while exact distribution of the control statistic is unknown, and thus limiting distribution of control statistic is employed which is applicable for large sample sizes. In practice, the normality assumption of distribution might be violated, while it is not always possible to collect large sample size. Furthermore, to use control charts in practice, the in‐control state usually has to be estimated. Such estimation has a negative effect on the performance of control chart. Non‐parametric bootstrap control charts can be considered as an alternative when the distribution is unknown or a collection of large sample size is not possible or the process parameters are estimated from a Phase I data set. In this paper, non‐parametric bootstrap multivariate control charts |S|, W, and G are introduced, and their performances are compared against Shewhart‐type control charts. The proposed method is based on bootstrapping the data used for estimating the in‐control state. Simulation results show satisfactory performance for the bootstrap control charts. Ultimately, the proposed control charts are applied to a real case study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.