1 The bronchoconstrictor responses to 5-hydroxytryptamine (5-HT) were studied in the guinea-pig to establish whether they are partly attributable to parasympathetic activation within the airways. 5-HT dose-response curves were constructed in anaesthetized and ventilated guinea-pigs pretreated with saline, or by bilateral cervical vagotomy or vagotomy plus atropine 3 mg kg 1, i.v. Vagotomy had no effect on 5-HT-induced bronchoconstriction but vagotomy plus atropine significantly reduced it. 2 To determine whether parasympathetic activation within the airways resulted from pre-or postganglionic stimulation, 5-HT dose-response curves were constructed for two groups of vagotomized guineapigs treated with hexamethonium 2mgkg-1, or hexamethonium 2mgkg-', plus atropine 3mgkg-1. Guinea-pigs treated with hexamethonium plus atropine experienced significantly less 5-HT-induced bronchoconstriction than those treated with hexamethonium alone.
The effects of body temperature on histamine-induced bronchoconstriction were investigated in anesthetized, paralyzed, and mechanically ventilated guinea pigs. Four groups of guinea pigs were studied with constant body temperatures of 40, 38, 35, and 32 degrees C, respectively. Histamine was infused for 5 min at a rate of 50 ng.kg-1.s-1. Body cooling from 40 to 32 degrees C augmented the bronchomotor responses to histamine, which eventually rose almost fourfold. The enhancement of histamine-induced bronchoconstriction induced by body cooling was not suppressed by pretreating guinea pigs with 5 mg/kg hexamethonium or 5 mg/kg hexamethonium plus 3 mg/kg atropine; neither was the enhancement of histamine-induced bronchoconstriction suppressed in pithed guinea pigs, demonstrating that the autonomic nervous system is not involved in potentiating bronchoconstriction at low body temperatures. These results suggest that, at low body temperatures, increased airway responsiveness to histamine may be because of some direct effect of temperature on bronchial airway smooth muscle.
The effects of tidal volume amplitude on bronchopulmonary reactivity were investigated in three groups of 14 anesthetized paralyzed mechanically ventilated guinea pigs. Animals of group 1 served as control; in animals of group 2, both the sympathetic and parasympathetic nervous systems were blocked; in animals of group 3, only the parasympathetic system was blocked. In each group, the animals were randomly divided into two subgroups characterized by their ventilatory pattern: rate of 60/min with a 6-ml/kg tidal volume or rate of 40/min with a 9-ml/kg tidal volume. Bronchopulmonary reactivity to infused histamine was assessed by the respiratory compliance and conductance values measured during bronchoconstriction and expressed as a percentage of the corresponding basal values. In group 1 the animals ventilated with a 9-ml/kg tidal volume were found significantly less reactive than those ventilated with a 6-ml/kg tidal volume. This difference was abolished in groups 2 and 3. These results demonstrate that the effects of increased tidal volume on bronchopulmonary reactivity are vagally mediated and suggest that the decrease observed in histamine-induced bronchoconstriction is mainly due to reflex effects evoked by stretch receptor stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.