The electronic properties of silver clusters (N up to 800) charged by attachment of up to z = 7 excess electrons are investigated. As an essential preparation step, the technique of in-trap electron attachment to size-selected monoanions within a linear Paul trap is applied. By taking advantage of tunable laser pulses, the photoelectron spectra allow us to evaluate details of the electronic structure of polyanionic metal clusters, giving a multidimensional dataset. The subsequent analysis based on the liquid drop model provides information about the atomic structure and the bulk work function at a hitherto unknown quality.
Using the example of metal clusters, an experimental setup and procedure is presented, which allows for the generation of size and charge-state selected polyanions from monoanions in a molecular beam. As a characteristic feature of this modular setup, the further charging process via sequential electron attachment within a three-state digital trap takes place after mass-selection. In contrast to other approaches, the rf-based concept permits access to heavy particles. The procedure is highly flexible with respect to the preparation process and potentially suitable for a wide variety of anionic species. By adjusting the storage conditions, i.e., the radio frequency, to the change in the mass-to-charge ratio, we succeeded in producing clusters in highly negative charge states, i.e., [Formula: see text]. The capabilities of the setup are demonstrated by experiments extracting electronic and optical properties of polyanionic metal clusters by analyzing the corresponding photoelectron spectra.
The structure and dynamics of isolated nanosamples in free flight can be directly visualized via single-shot coherent diffractive imaging using the intense and short pulses of x-ray free-electron lasers. Wide-angle scattering images encode three-dimensional (3D) morphological information of the samples, but its retrieval remains a challenge. Up to now, effective 3D morphology reconstructions from single shots were only achieved via fitting with highly constrained models, requiring a priori knowledge about possible geometries. Here, we present a much more generic imaging approach. Relying on a model that allows for any sample morphology described by a convex polyhedron, we reconstruct wide-angle diffraction patterns from individual silver nanoparticles. In addition to known structural motives with high symmetries, we retrieve imperfect shapes and agglomerates that were not previously accessible. Our results open unexplored routes toward true 3D structure determination of single nanoparticles and, ultimately, 3D movies of ultrafast nanoscale dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.