Using the example of metal clusters, an experimental setup and procedure is presented, which allows for the generation of size and charge-state selected polyanions from monoanions in a molecular beam. As a characteristic feature of this modular setup, the further charging process via sequential electron attachment within a 3-state digital trap takes place after mass-selection. In contrast to other approaches, the rf based concept permits to access heavy particles. The procedure is highly flexible with respect to the preparation process and potentially suitable for a wide variety of anionic species. By adjusting the storage conditions, i.e., the radio frequency, to the change in the mass-to-charge ratio, we succeeded to produce clusters in highly negative charge states, i.e., Ag 7− 800 . The capabilities of the setup are demonstrated by experiments extracting electronic and optical properties of polyanionic metal clusters by analyzing the corresponding photoelectron spectra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.