Although the deep, wide basins of the Western rift, Africa, have served as analogues for the evolution of half‐graben basins, the geometry and kinematics of the border, intrabasinal, and transfer fault systems have been weakly constrained. Despite the >100‐km‐long fault systems bounding basins, little was known of seismicity patterns or the potential for M > 7.5 earthquakes. Using our new local earthquake database from the 2013‐2015 Study of Extension and maGmatism in Malawi aNd Tanzania (SEGMeNT) seismic array (57 onshore, 32 lake‐bottom stations) and TANGA14 (13 stations), we examine the kinematics and extension direction of the Rungwe Volcanic Province and northern Malawi rift. We relocated earthquakes using a new 1‐D velocity model and both absolute and double‐difference relocation methods. Local magnitudes of 1,178 earthquakes within the array are 0.7 < ML < 5.2 with a b‐value 0.77 ± 0.03, and magnitude of completeness ML 1.9. Focal mechanism solutions for 63 earthquakes reveal predominantly normal and oblique‐slip motion, and full moment tensor solutions for ML 4.5, 5.2 earthquakes have centroid depths within 2 km of catalog depths. The preferred nodal planes dip more than 40° from surface to >25‐km depths. Extension direction from local earthquakes and source mechanisms of teleseismically detected earthquakes are approximately N58°E and N65°E, respectively, refuting earlier interpretations of a NW‐SE transform fault system. The low b‐value indicating strong coupling across crustal‐scale border faults, border fault lengths >100 km, and evidence for aseismic deformation together indicate that infrequent M > 7.5 earthquakes are possible within this cratonic rift system.
The North Basin of the Malawi Rift is an active, early-stage rift segment that provides the opportunity to quantify cumulative and recent faulting patterns in a young rift, assess contributions of intrarift faults to accommodating rift opening, and examine controls on spatial patterns of faulting. Multichannel seismic reflection data acquired in Lake Malawi (Nyasa) in 2015 together with legacy multichannel seismic data image a system of synthetic intrarift faults within this border-fault-bounded, half-graben basin. A dense wide-angle seismic reflection/refraction dip profile acquired with lake bottom seismometer data constrains sediment velocities that are used to convert fault throws from travel time to depth. Observed extension on intrarift faulting in the northern and central parts of the North Basin is approximately twice what would be predicted for hanging wall flexure, implying that the intrarift faults contribute to basin opening. The cumulative throw on intrarift faults is higher in the northern part of the rift segment than the south and is anticorrelated with throw on the border fault, which is largest in the southern part of the North Basin. This change in faulting coincides with a change in the orientation of the North Basin from a N-S trend in the south to a NNW-SSE trend in the north. We infer that the distribution of extension is influenced by rift orientation with respect to the regional extension direction. Almost all intrarift faults substantially offset late Quaternary synrift sediments, suggesting they are likely active and need to be considered in hazard assessments.
In weathered bedrock aquifers, groundwater is stored in pores and fractures that open as rocks are exhumed and minerals interact with meteoric fluids. Little is known about this storage because geochemical and geophysical observations are limited to pits, boreholes, or outcrops or to inferences based on indirect measurements between these sites. We trained a rock physics model to borehole observations in a well-constrained ridge and valley landscape and then interpreted spatial variations in seismic refraction velocities. We discovered that P-wave velocities track where a porosity-generating reaction initiates in shale in three boreholes across the landscape. Specifically, velocities of 2.7 ± 0.2 km/s correspond with growth of porosity from dissolution of chlorite, the most reactive of the abundant minerals in the shale. In addition, sonic velocities are consistent with the presence of gas bubbles beneath the water table under valley and ridge. We attribute this gas largely to CO2 produced by 1) microbial respiration in soils as meteoric waters recharge into the subsurface and 2) the coupled carbonate dissolution and pyrite oxidation at depth in the rock. Bubbles may nucleate below the water table because waters depressurize as they flow from ridge to valley and because pores have dilated as the deep rock has been exhumed by erosion. Many of these observations are likely to also describe the weathering and flow path patterns in other headwater landscapes. Such combined geophysical and geochemical observations will help constrain models predicting flow, storage, and reaction of groundwater in bedrock systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.