Although the deep, wide basins of the Western rift, Africa, have served as analogues for the evolution of half‐graben basins, the geometry and kinematics of the border, intrabasinal, and transfer fault systems have been weakly constrained. Despite the >100‐km‐long fault systems bounding basins, little was known of seismicity patterns or the potential for M > 7.5 earthquakes. Using our new local earthquake database from the 2013‐2015 Study of Extension and maGmatism in Malawi aNd Tanzania (SEGMeNT) seismic array (57 onshore, 32 lake‐bottom stations) and TANGA14 (13 stations), we examine the kinematics and extension direction of the Rungwe Volcanic Province and northern Malawi rift. We relocated earthquakes using a new 1‐D velocity model and both absolute and double‐difference relocation methods. Local magnitudes of 1,178 earthquakes within the array are 0.7 < ML < 5.2 with a b‐value 0.77 ± 0.03, and magnitude of completeness ML 1.9. Focal mechanism solutions for 63 earthquakes reveal predominantly normal and oblique‐slip motion, and full moment tensor solutions for ML 4.5, 5.2 earthquakes have centroid depths within 2 km of catalog depths. The preferred nodal planes dip more than 40° from surface to >25‐km depths. Extension direction from local earthquakes and source mechanisms of teleseismically detected earthquakes are approximately N58°E and N65°E, respectively, refuting earlier interpretations of a NW‐SE transform fault system. The low b‐value indicating strong coupling across crustal‐scale border faults, border fault lengths >100 km, and evidence for aseismic deformation together indicate that infrequent M > 7.5 earthquakes are possible within this cratonic rift system.
Recent large basaltic eruptions began after only minor surface uplift and seismicity, and resulted in caldera subsidence. In contrast, some eruptions at Galápagos Island volcanoes are preceded by prolonged, large amplitude uplift and elevated seismicity. These systems also display long-term intra-caldera uplift, or resurgence. However, a scarcity of observations has obscured the mechanisms underpinning such behaviour. Here we combine a unique multiparametric dataset to show how the 2018 eruption of Sierra Negra contributed to caldera resurgence. Magma supply to a shallow reservoir drove 6.5 m of pre-eruptive uplift and seismicity over thirteen years, including an Mw5.4 earthquake that triggered the eruption. Although co-eruptive magma withdrawal resulted in 8.5 m of subsidence, net uplift of the inner-caldera on a trapdoor fault resulted in 1.5 m of permanent resurgence. These observations reveal the importance of intra-caldera faulting in affecting resurgence, and the mechanisms of eruption in the absence of well-developed rift systems.
Unusually deep earthquakes occur beneath rift segments with and without surface expressions of magmatism in the East African Rift system. The Tanganyika rift is part of the Western rift and has no surface evidence of magmatism. The TANG14 array was deployed in the southern Tanganyika rift, where earthquakes of magnitude up to 7.4 have occurred, to probe crust and upper mantle structure and evaluate fault kinematics. Four hundred seventy-four earthquakes detected between June 2014 and September 2015 are located using a new regional velocity model. The precise locations, magnitudes, and source mechanisms of local and teleseismic earthquakes are used to determine seismogenic layer thickness, delineate active faults, evaluate regional extension direction, and evaluate kinematics of border faults. The active faults span more than 350 km with deep normal faults transecting the thick Bangweulu craton, indicating a wide plate boundary zone. The seismogenic layer thickness is 42 km, spanning the entire crust beneath the rift basins and their uplifted flanks. Earthquakes in the upper mantle are also detected. Deep earthquakes with steep nodal planes occur along subsurface projections of Tanganyika and Rukwa border faults, indicating that large offset (≥5 km) faults penetrate to the base of the crust, and are the current locus of strain. The focal mechanisms, continuous depth distribution, and correlation with mapped structures indicate that steep, deep border faults maintain a half-graben morphology over at least 12 Myr of basin evolution. Fault scaling based on our results suggests that M > 7 earthquakes along Tanganyika border faults are possible.
Although magmatism may occur during the earliest stages of continental rifting, its role in strain accommodation remains weakly constrained by largely 2‐D studies. We analyze seismicity data from a 13 month, 39‐station broadband seismic array to determine the role of magma intrusion on state‐of‐stress and strain localization, and their along‐strike variations. Precise earthquake locations using cluster analyses and a new 3‐D velocity model reveal lower crustal earthquakes beneath the central basins and along projections of steep border faults that degas CO2. Seismicity forms several disks interpreted as sills at 6–10 km below a monogenetic cone field. The sills overlie a lower crustal magma chamber that may feed eruptions at Oldoinyo Lengai volcano. After determining a new ML scaling relation, we determine a b‐value of 0.87 ± 0.03. Focal mechanisms for 65 earthquakes, and 13 from a catalogue prior to our array reveal an along‐axis stress rotation of ∼60° in the magmatically active zone. New and prior mechanisms show predominantly normal slip along steep nodal planes, with extension directions ∼N90°E north and south of an active volcanic chain consistent with geodetic data, and ∼N150°E in the volcanic chain. The stress rotation facilitates strain transfer from border fault systems, the locus of early‐stage deformation, to the zone of magma intrusion in the central rift. Our seismic, structural, and geochemistry results indicate that frequent lower crustal earthquakes are promoted by elevated pore pressures from volatile degassing along border faults, and hydraulic fracture around the margins of magma bodies. Results indicate that earthquakes are largely driven by stress state around inflating magma bodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.