An initial design of a morphing wingtip for a regional jet aircraft is developed and evaluated. The adaptive wingtip concept is based upon a chiral-type internal structure, enabling controlled cant angle orientation, camber, and twist throughout the flight envelope. A baseline turbofan aircraft configuration model is used as the benchmark to assess the device. Computational fluid dynamics based aerodynamics are used to evaluate the required design configurations for the device at different points across the flight envelope in terms of lift/drag and bending moment distribution along the span, complemented by panel-method-based gust load computations. Detailed studies are performed to show how the chiral structure can facilitate the required shape changes in twist, camber, and cant. Actuator requirements and limitations are assessed, along with an evaluation of the aerodynamic gains from the inclusion of the device versus power and weight penalties. For a typical mission, it was found that savings of around 2% in fuel weight are possible using the morphing wingtip device. A similar reduction in weight due to passive gust load alleviation is also possible with a slight change of configuration.
An initial design of a morphing wing-tip for a Regional Jet aircraft is developed and evaluated. The adaptive wing-tip concept is based upon a chiral type internal structure, enabling controlled cant angle orientation, camber and twist throughout the flight envelope. A baseline Turbo-Fan Aircraft configuration model is used as the benchmark to assess the device. CFD based aerodynamics are used to evaluate the required design configurations for the device at different points across the flight envelope in terms of lift/drag and bending moment distribution along the span, complemented by panel method based gust load computations. Detailed studies are performed to show how the chiral structure can facilitate the required shape changes in twist, camber and cant. Actuator requirements and limitations are assessed, along with an evaluation of the aerodynamic gains from the inclusion of the device versus power and weight penalties. For a typical mission it was found that savings of around 2% in fuel weight are possible using the morphing wing-tip device. A similar reduction in weight due to passive gust loads alleviation is also possible with a slight change of configuration.
The current drive towards reducing the environmental impact of aircraft necessitates the ability to evaluate techniques for promoting natural laminar flow in a large scale wind tunnel facility. A test was undertaken on the M2355 variable sweep model to obtain temperature sensitive paint (TSP) and hot-film data from which the transition locations at a range of sweep angles and flow conditions could be identified. The TSP technique has been shown to be a reliable method for determining transition on suitably treated wind tunnel models. Pressure data were also acquired and interpolated to provide the input to the laminar boundary layer code, BL2D, the output from which was used in the linear stability analysis code, CoDS, to calculate the N-factor for the ARA TWT (Transonic Wind Tunnel) facility. Two sets of N-factors were calculated, firstly using incompressible analysis with stationary crossflow and secondly using compressible analysis with travelling crossflow. In both analyses the Tollmien-Schlichting and crossflow cases were calculated together, rather than separating the cases before running the analysis. The resulting N-factors indicate a degree of scatter typical for experimental data. The N-factor based on incompressible theory for crossflow was found to be approximately 7 and for Tollmien-Schlichting (T-S), approximately 11. The results of the wind tunnel test and the analysis carried out are considered to be the first steps towards establishing a methodology for performance testing, in atmospheric tunnels such as the TWT, for aircraft designed to have significant regions of laminar flow. The project has also provided a body of experimental test data which will be valuable for future research into development and validation of laminar flow methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.