Management of dryland salinity in Australia will require changes in the design and utilisation of plant systems in agriculture. These changes will provide new opportunities for livestock agriculture. In areas already affected by salt, a range of plants can be grown from high feeding value legumes with moderate salt tolerance through to highly salt tolerant shrubs. A hectare of these plants may support between 500 and 2000 sheep grazing days per year. The type of plants that can be grown and the subsequent animal production potential depend on a range of factors that contribute to the ‘salinity stress index’ of a site, including soil and groundwater salinity, the extent and duration of waterlogging and inundation, the pattern and quantity of annual rainfall, soil texture and chemistry, site topography and other site parameters. Where the salinity stress index is high, plant options will usually include a halophytic shrub that accumulates salt. High salt intakes by grazing ruminants depress feed intake and production. Where high and low salt feeds are available together, ruminants will endeavour to select a diet that optimises the overall feeding value of the ingested diet. In areas that are not yet salt affected but contribute to groundwater recharge, perennial pasture species offer an opportunity for improved water and salt management both on-farm and at the catchments. If perennial pasture systems are to be adopted on a broad scale, they will need to be more profitable than current annual systems. In the high rainfall zones in Victoria and Western Australia, integrated bioeconomic and hydrological modelling indicates that selection of perennial pasture plants to match requirements of a highly productive livestock system significantly improves farm profit and reduces groundwater recharge. In the low to medium rainfall zones, fewer perennial plant options are available. However, studies aiming to use a palette of plant species that collectively provide resilience to the environment while maintaining profitable livestock production may also lead to new options for livestock in the traditional cropping zone.
Subterranean clover (Trifolium subterraneum L.) is an important pasture legume in many regions of Australia, and elsewhere. A survey was undertaken in 2014 to define the levels of soilborne disease and associated pathogens in annual subterranean clover pastures across southern Australia. Most of the 202 samples processed had very severe levels of taproot rot disease (disease index 60–80%) and extremely severe lateral root rot disease (disease index 80–100%). A complex of soilborne root pathogens including Aphanomyces trifolii, Phytophthora clandestina, and one or more of Pythium, Rhizoctonia and Fusarium spp. was found responsible for severe pre- and post-emergence damping-off and root disease. This is the first study to highlight the high incidence of A. trifolii across southern Australian pastures and the first to highlight the existence of natural synergistic associations in the field between Rhizoctonia and Pythium spp., Pythium and Fusarium spp., Pythium spp. and A. trifolii, and P. clandestina and A. trifolii. Nodulation was generally poor, mainly only in the 20–40% nodulation index range. There was no relationship between rainfall zone and tap or lateral root disease level, with root disease equally severe in lower (330 mm) and higher (1000 mm) rainfall zones. This dispels the previous belief that severe root disease in subterranean clover is an issue only in higher rainfall zones. Although overall the relationship between tap and lateral root disease was relatively weak, these two root-disease components were strongly positively expressed within each pathogen’s presence grouping, providing explanation for variability in this relationship across different field situations where soilborne root disease is a major problem. Most producers underestimated the levels and effect of root disease in their pastures. This study established that tap and lateral root diseases are widespread and severe, having devastating impact on the feed gap during autumn–early winter across southern Australia. Severe root disease was independent of the highly variable complex of soilborne pathogens associated with diseased roots, geographic location and rainfall zone. It is evident that soilborne root diseases are the primary factor responsible for widespread decline in subterranean clover productivity of pastures across southern Australia. Implications for disease management and options for extension are discussed.
This experiment evaluated the productivity of 500 Angus cows that differed in genetic merit for either subcutaneous rib fat depth (Fat) or residual feed intake (RFI) based on estimated breeding values (EBVs) and managed under two levels of nutrition. Reproductive rate over four calving opportunities in mature cows and growth performance of progeny to weaning was assessed. Level of nutrition significantly affected all body composition traits for both Fat and RFI line cows. Cows on High-Nutrition were 14–16% heavier (P < 0.001) than those on Low-Nutrition. Differences in EBVs for fatness were reflected in phenotypic fatness at maturity. High-RFI line cows were fatter for both scanned rump (P8) and rib (RIB) fat depth relative to their Low-RFI contemporaries. Of those cows that were lactating, there was no significant effect of line or nutrition on pregnancy rate or days to calving (DC). There was, however, a trend (P < 0.1) in the Low-Fat line cows towards longer DC compared with the High-Fat line cows. There was no significant effect of either line or nutrition on calf birthweight. Calves with mothers on High-Nutrition were 8% heavier at weaning (P < 0.001) than those on Low-Nutrition. Lower EBVs for RFI was associated with higher 200-day growth EBV and heavier calves at weaning. Current carcass BREEDPLAN EBVs can be used to select for changes in cow body composition if desired. In this experiment, Angus cows selected for lower RFI or with below-average fatness EBV and had raised a calf at every previous opportunity were not compromised in pregnancy rate or DC at maturity under varying nutrition such as can be experienced during normal seasonal conditions in southern Australia. However, selection for lower RFI was associated with lower weaning rate (P < 0.05), which warrants further investigation to confidently predict the implications for commercial cattle production.
Australian seedstock cattle breeders have expressed concerns that while there has been genetic improvement in feedlot and abattoir performance of cows, it could have led to a decline in maternal productivity, especially under variable nutritional conditions. This paper describes a substantial project with two components designed to address these issues. The first sub-project was to monitor bodyweight and composition of 7760 young Angus and Hereford cows as they experience variable physiological states (pregnancy and lactation) and seasons. This was conducted on large numbers in seedstock herds. The second sub-project was to monitor more regularly bodyweight, body composition, and calf rearing performance of 500 Angus cows that are genetically divergent for either fat or residual feed intake at two research centres. This also included two levels of nutrition and recording of weekly feed intake of small groups of cows for at least three parities to allow reporting of genotype × nutrition effects on maternal productivity and efficiency. Results from the project are reported in a series of papers with each one having a defined focus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.