Both spin and orbital angular momentum can be exchanged between a rotating wave and a rotating magnetized plasma. Through resonances the spin and orbital angular momentum of the wave can be coupled to both the cyclotron rotation and the drift rotation of the particles. It is, however, shown that the Landau and cyclotron resonance conditions which classically describe resonant energy–momentum exchange between waves and particles are no longer valid in a rotating magnetized plasma column. In this case a new resonance condition which involves a resonant matching between the wave frequency, the cyclotron frequency modified by inertial effects and the harmonics of the guiding centre rotation is identified. A new quasilinear equation describing orbital and spin angular momentum exchanges through these new Brillouin resonances is then derived, and used to expose the wave-driven radial current responsible for angular momentum absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.