To identify genes important for human cognitive development, we studied Williams syndrome (WS), a developmental disorder that includes poor visuospatial constructive cognition. Here we describe two families with a partial WS phenotype; affected members have the specific WS cognitive profile and vascular disease, but lack other WS features. Submicroscopic chromosome 7q11.23 deletions cosegregate with this phenotype in both families. DNA sequence analyses of the region affected by the smallest deletion (83.6 kb) revealed two genes, elastin (ELN) and LIM-kinase1 (LIMK1). The latter encodes a novel protein kinase with LIM domains and is strongly expressed in the brain. Because ELN mutations cause vascular disease but not cognitive abnormalities, these data implicate LIMK1 hemizygosity in imparied visuospatial constructive cognition.
Duane's retraction syndrome (DRS) is a complex congenital eye movement disorder caused by aberrant innervation of the extraocular muscles by axons of brainstem motor neurons. Studying families with a variant form of the disorder (DURS2-DRS), we have identified causative heterozygous missense mutations in
CHN1
, a gene on chromosome 2q31 that encodes α2-chimaerin, a Rac guanosine triphosphatase–activating protein (RacGAP) signaling protein previously implicated in the pathfinding of corticospinal axons in mice. We found that these are gain-of-function mutations that increase α2-chimaerin RacGAP activity in vitro. Several of the mutations appeared to enhance α2-chimaerin translocation to the cell membrane or enhance its ability to self-associate. Expression of mutant α2-chimaerin constructs in chick embryos resulted in failure of oculomotor axons to innervate their target extraocular muscles. We conclude that α2-chimaerin has a critical developmental function in ocular motor axon pathfinding.
Familial cases of frontotemporal dementia (FTD) provide an opportunity to study the pathophysiology of this clinically diverse condition. The C9ORF72 mutation is the most common cause of familial FTD, recent pathological descriptions challenge existing TDP-43 based hypotheses of sporadic FTD pathogenesis. Non-ATG dependent translation of the hexanucleotide expansion into aggregating dipeptide repeat (DPR) proteins may represent a novel pathomechanism. We report detection of the DPR aggregates very early in C9ORF72 FTD development and also describe childhood intellectual disability as a clinical feature preceding dementia. The index case presented with psychiatric symptoms, progressing into typical FTD. Autopsy revealed extensive neuronal DPR aggregates but only minimal TDP-43 pathology. Her intellectually disabled elder son, also carrying the C9ORF72 mutation, died aged 26 years and at autopsy only DPR aggregates without TDP-43 were found. A second son also has intellectual disability, his C9ORF72 status is unknown, but chromosomal microarray revealed no other cause of disability. These cases both extend the existing phenotype of C9ORF72 mutation and highlight the potential significance of DPR translation early in disease development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.