The aim is to structural synthesis of robust stabilizing control of the rotor flux vector control system of induction motor. Methodology. Synthesis controller structure was carried out in two stages. The first stage constructed a mathematical model of the channel of the rotor flux with parametric uncertainty and calculated transfer function of H ∞suboptimal controller by method of the mixed sensitivity. The second stage was carried out the expansion of the transfer function of the continued fraction for the Euclidean algorithm. This fraction was used to construct the controller structural scheme. Results. Computer modeling of the transfer function of H ∞-suboptimal controller. Achieved decomposition found the transfer function of the continued fraction. The flow diagram of suboptimal H ∞-controller with a proportional and integrating links and a few summers. The curves of transient rotor flux linkage in packages Robust Control Toolbox and Simulink. They coincide in the steady state, but differ among themselves in the transition. Originality. We developed the method of structural synthesis of robust stabilizing controller of the flux linkage rotor, H ∞-suboptimal structural scheme of which is presented in the form of simple compounds integrating and proportional elements of the same order as the controller with the strictly correct transfer function, and takes into account the parametric uncertainty of control object. The results of the simulation of transient processes in a variety of packages MATLAB applications confirms the adequacy and small sensitivity of the system to parametric perturbation. The practical value. The resulting structure of the controller makes it possible to carry out the modernization of electric control systems, in use, with minimal financial costs. References 10, figures 6.
The aim is to investigate the stability and the accuracy of a robust system for stabilizing the rotor flux-linkage of an asynchronous electric drive at random variations of the uncertain parameters of the object and the regulator within the specified boundaries. Methodology. To make the research, the mathematical model of the rotor flux-linkage channel of the vector control system of an asynchronous electric drive with parametric uncertainty was applied. The transfer function of the Н ∞-suboptimal regulator was calculated using the mixed sensitivity method. This transfer function was used to construct the regulator structural scheme in the form of a connection of proportional and integrating links and several adders. Analytical dependences of the coefficients of the regulator's transfer function on the parameters of links of such a connection are determined. These dependences served to researching the influence of uncertain parameters of the regulator links and the object on the stability of the robust system and the accuracy of flux-linkage stabilization. Results. Investigations of the robust system stability and the accuracy of flux-linkage stabilization in the Robust Control Toolbox are done. The curves of the fluxlinkage transient processes and the Bode diagram for the open system at random variations of the indeterminate parameters of the object and the regulator links within the specified boundaries are constructed. A choice of variable parameters was carried out by the Monte Carlo method. By the scatter of the obtained curves of the transient processes, the accuracy of flux-linkage stabilization was determined, and according to the Bode diagram, stability reserves in the amplitude and the phase of the robust system were determined. A high accuracy of flux-linkage stabilization (deviation less than 1 %) in fairly wide ranges of changing the uncertain parameters of the object and the regulator, while maintaining the stability of the system with permissible reserves in amplitude and phase, is established. Originality. For the first time, analytical dependences of the coefficients of the transfer function of the Н ∞-suboptimal regulator on the parameters of its structural scheme, which represented in the form of a connection of proportional and integrating links, are obtained. The method for calculating the stability of a robust flux-linkage control system and the accuracy of its stabilization at random variations of the uncertain parameters of the object and the regulator links within the specified boundaries is developed. Practical value. The use of the proposed method allows, during the design of the regulator, to ensure the selection of its elements from standard series. References 10, figures 3.
Розглядається задача стабілізації параметрів системи векторного керування асинхронного електропривода. Зазвичай такі системи містять два канали керування. Для кожного каналу системи проводиться синтез стабілізуючих регуляторів. Оцінка змінних стану системи здійснюється спостерігачем. Задача синтезу стабілізуючих регуляторів та спостерігача полягає в обчисленні коефіцієнтів підсилення зворотних зв'язків за станом. Її розв'язок базується на відомих підходах з теорій векторного керування, матричних нерівностей і стійкості О.М. Ляпунова. Запропоновані методики синтезу стабілізуючих регуляторів та спостерігача. Побудовано структурну схему системи векторного керування. Моделювання перехідних процесів у системі проведено в середовищі пакета MATLAB. Найважливішою властивістю отриманого рішення є стійкість за О.М. Ляпуновим замкнених за векторами станів контурів регулювання. На конкретному прикладі досліджені перехідні процеси. Побудовані графіки, що підтверджують стійкість таких процесів, що протікають в системі векторного керування. Бібл. 11, рис. 2. Ключові слова: електропривод, векторне керування, стабілізуючий регулятор. Рассматривается задача стабилизации параметров системы векторного управления асинхронного электропривода. Обычно такие системы содержат два канала управления. Для каждого канала системы проводится синтез стабилизирующих регуляторов. Оценка переменных состояния системы производится наблюдателем. Задача синтеза стабилизирующих регуляторов и наблюдателя заключается в вычислении коэффициентов усиления обратных связей по состоянию. Ее решение базируется на известных подходах из теорий векторного управления, матричных неравенств и устойчивости А.М. Ляпунова. Предложены методики синтеза стабилизирующих регуляторов и наблюдателя. Построена структурная схема системы векторного управления. Моделирование переходных процессов в системе проведено в среде пакета MATLAB. Важнейшим свойством полученного решения является устойчивость по А.М. Ляпунову замкнутых по векторам состояний контуров регулирования. На конкретном примере исследованы переходные процессы. Построены графики, подтверждающие устойчивость таких процессов, протекающих в системе векторного управления.Библ. 11, рис. 2. Ключевые слова: электропривод, векторное управление, стабилизирующий регулятор.
The aim of the work is the calculation and design of a robust speed controller of a frequency-controlled induction electric drive with parametric uncertainty and the presence of interferences in the feedback channel. Methodology. The calculation and design of the controller was carried out in four stages. At the first stage, a linearized mathematical model of the control object with parametric uncertainty was constructed and the transfer function of the H∞-suboptimal controller was calculated in the Robust Control Toolbox using the mixed sensitivity method. At the second stage, the stability of the robust system and the accuracy of stabilization of the induction machine speed with random variations of the object's and controller's uncertain parameters within the specified boundaries were explored. At the third stage, the influence of interferences arising in the feedback channel on the speed of the electric motor was explored in the Simulink package. At the final stage, the transfer function of the H∞-suboptimal controller was decomposed into a continued fraction using the Euclidean algorithm. This fraction was used to build the electric scheme of the controller. Results. Computer modelling of the transfer function of H∞-suboptimal controller, the robust stabilization system for the speed of the frequency-controlled electric drive with random variations of the uncertain parameters of the object and the controller at specified boundaries, as well as with the presence of varying intensity interferences in the feedback channel, was carried out. The choice of variable parameters was carried out according to the Monte-Carlo method. The curves of transient processes of the induction machine speed with parametric uncertainty and at different ranges of interference are constructed, as well as a Bode diagram for an open system. By the scatter of the obtained curves of the transient processes, the accuracy of speed stabilization of the machine was determined, and according to the Bode diagram, stability reserves in the amplitude and the phase of the robust system were determined. They are within tolerances with comparatively large deviations of the varied parameters and the range of interferences. Based on the investigations, an electrical circuit of the H∞-suboptimal robust controller was developed. Originality. The mathematical model has been developed and the methodology for calculating and designing of H∞-suboptimal robust speed controller of the frequency-controlled system of an induction electric drive with random variations of the uncertain parameters of the object and the controller at determined boundaries and the presence of interferences in the feedback channel, ensuring the stability of the system with allowable reserves of the amplitude and the phase and high accuracy of speed stabilization of the machine within the tolerances of uncertain system parameters and interferences was proposed. Practical value. The obtained structure of the controller from analog elements makes it possible to carry out modernization...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.