Earth's cratonic mantle lithosphere is distinguished by high seismic wave velocities that extend to depths greater than 200 km, but recent studies disagree on the magnitude and depth extent of the velocity gradient at their lower boundary. Here we analyze and model the frequency dependence of Sp waves to constrain the lithosphere‐asthenosphere velocity gradient at long‐lived stations on cratons in North America, Africa, Australia, and Eurasia. Beneath 33 of 44 stations, negative velocity gradients at depths greater than 150 km are less than a 2–3% velocity drop distributed over more than 80 km. In these regions the base of the typical cratonic lithosphere is gradual enough to be explained by a thermal transition. Vertically sharper lithosphere‐asthenosphere transitions are permitted beneath 11 stations, but these zones are spatially intermittent. These results demonstrate that lithosphere‐asthenosphere viscosity contrasts and coupling fundamentally differ between cratons and younger continents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.