Gene transfer to the respiratory epithelium is currently apical membrane represented a significant barrier to both suboptimal and may be helped by the identification of limitagents. Adenovirus-mediated expression could be signifiing biological barriers. We have, therefore, developed an cantly augmented by increasing contact time or by preex vivo model which retains many of the characteristics of treatment of tissues with a nominally calcium-free medium. in vivo native airways including mucociliary clearance,The presence of these extracellular and plasma membrane mucus coverage and an intact cellular structure. Using this barriers appeared to be the key parameters responsible for model we have demonstrated several barriers to gene the approximately three log difference in gene expression transfer. Liposome-mediated gene transfer was inhibited found in vitro compared with our ex vivo model. Cytoskeleby normal mucus, with removal of this layer increasing tal elements and the cell cycle also influenced in vitro gene expression approximately 25-fold. In addition both lipotransfer, and represent further barriers which need to be some and adenovirus were inhibited by CF sputum. The overcome.
In Huntington's diseased human brain, it is in the caudate nucleus (CN) and globus pallidus (GP) of the basal ganglia where nerve cell death is seen most dramatically. The distribution of five gap junction proteins (connexins 26, 32, 40, 43 and 50) has been examined in these areas in normal and Huntington's diseased human brain using immunohistochemical techniques. There was no Cx50 expression observed and Cx40 was localized in the endothelial cells of blood vessels, with the Huntington's diseased brains having more numerous and smaller blood vessels than normal tissue. Cx26 and Cx32 revealed a similar distribution pattern to each other in both normal and diseased brains with little labelling in the CN but clear labelling in the GP. Cx43, expressed by astrocytes, was the most abundant connexin type of those studied. In both normal and diseased brains Cx43 in the GP was homogeneously distributed in the neuropil. In the CN, however, Cx43 density was both increased with Huntington's disease and became located in patches. Glial fibrillary acidic protein(GFAP) staining of astrocytes was also highly increased in the CN compared with normal brains. These labelling patterns indicate a reactive astrocytosis around degenerating neurons with an increased expression of astrocytic gap junctions. The enhanced coupling state between astrocytes, assuming the junctions are functional, could provide an increased spatial buffering capacity by the astrocytes in an attempt to maintain a proper environment for the neurons, helping promote neuronal survival in this neurodegenerative disorder.
We have previously shown that normal-density human peripheral blood eosinophils transcribe and translate mRNA for granulocyte-macrophage colony-stimulating factor (GM-CSF) and that the intracellular distribution was granular as assessed by light microscopy immunocytochemistry. The present study was conducted to confirm this apparent association between GM-CSF and the crystalloid granule using a subcellular fractionation method for human eosinophils and immunogold electron microscopy (EM). Highly purified (> 99%, by negative selection using anti-CD16 immunomagnetic microbeads) human peripheral blood eosinophils were obtained from four asthmatic subjects (not taking systemic medication), homogenized and density fractionated (5 x 10(7) cells/subject) on linear Nycodenz gradients. Twenty-four fractions were collected from each cell preparation and analyzed for marker enzyme activities as well as total protein. Dot blot analysis with specific monoclonal antibodies (MoAbs) was used to detect the eosinophil granule proteins major basic protein (MBP) and eosinophil cationic protein (ECP). An anti-CD9 MoAb was used as an eosinophil plasma membrane marker. Lactate dehydrogenase (LDH) was used as a cytosolic marker. Immunoreactivity for GM-CSF was detected by a specific enzyme-linked immunosorbent assay using a polyclonal antihuman GM-CSF antibody and confirmed by dot blot. GM-CSF coeluted with the cellular fractions containing granule markers (MBP, ECP, eosinophil peroxidase, hexosaminidase, and arylsulphatase), but not those containing cytoplasm (LDH+) or membrane (CD9+) markers. EM examination of pooled fractions associated with the peak of GM-CSF immunoreactivity confirmed that they contained crystalloid and small granules, but not plasma membrane. In addition, quantification, using immunogold labeling with an anti/GM-CSF MoAb, indicated preferential localization of gold particles over the eosinophil granule cores of intact cells. Thus, our results indicate that GM-CSF resides as a granule-associated, stored mediator in unstimulated human eosinophils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.