We develop a concrete Fourier transform on a compact Lie group by means of a symbol calculus, or *-product, on each integral co-adjoint orbit. These *-products are constructed by means of a moment map defined for each irreducible representation. We derive integral formulae for these algebra structures and discuss the relationship between two naturally occurring inner products on them. A global Kirillov-type character is obtained for each irreducible representation. The case of SU(2) is treated in some detail, where some interesting connections with classical spherical trigonometry are obtained.
This article provides a simple pictorial introduction to universal hyperbolic geometry. We explain how to understand the subject using only elementary projective geometry, augmented by a distinguished circle. This provides a completely algebraic framework for hyperbolic geometry, valid over the rational numbers (and indeed any field not of characteristic two), and gives us many new and beautiful theorems. These results are accurately illustrated with colour diagrams, and the reader is invited to check them with ruler constructions and measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.