The current phase of drug development is witnessing an oncoming crisis due to the combined effects of increasing R&D costs, decreasing number of new drug molecules being launched, several blockbuster drugs falling off the patent cliff, and a high proportion of advanced drug candidates exhibiting poor aqueous solubility. The traditional approach of salt formulation to improve drug solubility is unsuccessful with molecules that lack ionizable functional groups, have sensitive moieties that are prone to decomposition/racemization, and/or are not sufficiently acidic/basic to enable salt formation. Several novel examples of pharmaceutical cocrystals from the past decade are reviewed, and the enhanced solubility profiles of cocrystals are analyzed. The peak dissolution for pharmaceutical cocrystals occurs in a short time (<30 min), and high solubility is maintained over a sufficiently long period (4–6 h) for the best cases. The enhanced solubility of drug cocrystals is similar to the supersaturation phenomenon characteristic of amorphous drugs. However, in contrast to the metastable nature of amorphous phases, cocrystals are stable owing to their crystalline nature. Yet, cocrystals can exhibit dramatic solubility advantage over the stable crystalline drug form, often comparable to amorphous pharmaceuticals. The “spring and parachute” concept for amorphous drug dissolution is adapted to explain the solubility advantage of pharmaceutical cocrystals. Thus (1) the cocrystal dissociates to amorphous or nanocrystalline drug clusters (the spring), which (2) transform via fast dissolving metastable polymorphs to the insoluble crystalline modification following the Ostwald’s Law of Stages, to give (3) high apparent solubility for cocrystals and optimal drug concentration (the parachute) in the aqueous medium.
Two polymorphs of the well-known diuretic drug Lasix, generic name furosemide, are characterized by single crystal X-ray diffraction to give a trimorphic cluster of polymorphs: known form 1 in P1 space group, and novel forms 2 and 3 in P2 1 /n and P1 space groups. The conformationally flexible molecule 4-chloro-2-[(2-furanylmethyl)amino]-5-sulfamoylbenzoic acid has variable torsions at the sulfonamide and furyl ring portions in conformers which lie in a 6 kcal mol -1 energy window. A conformer surface map was calculated to show that the two conformations in crystal form 1 are ∼4.5 kcal mol -1 less stable than conformers present in forms 2 and 3 (0.7, 0.0 kcal mol -1 ). The stabilization of molecular conformations is analyzed in terms of attractive intramolecular N-H 3 3 3 Cl hydrogen bonds and minimization of repulsive SdO 3 3 3 Cl interactions. Phase stability relationships confirm the thermodynamic nature of form 1 in grinding and slurry experiments by X-ray powder diffraction and infrared spectroscopy. Despite the large difference in molecular conformer energies, crystal lattice energies of polymorphs 1-3 are very close (-41.65, -41.78, -41.53 kcal mol -1 ). These results show that the thermodynamic stability of polymorph 1 of furosemide concluded in crystallization experiments is not possible to predict through computations. Moreover, the presence of metastable conformers in the stable crystal structure reemphasizes that there is no substitute for experimental validation in polymorphic systems. The greater stability of polymorph 1 is ascribed to its more efficient crystal packing, higher density, and the presence of R 4 2 (8) sulfonamide N-H 3 3 3 O dimer synthon. Because of the differences in torsion angles and hydrogen bonding in polymorphs 1-3, they are more appropriately classified as conformational and synthon polymorphs.
The antitumor prodrug temozolomide (TMZ) decomposes in aqueous medium of pH≥7 but is relatively stable under acidic conditions. Pure TMZ is obtained as a white powder but turns pink and then brown, which is indicative of chemical degradation. Pharmaceutical cocrystals of TMZ were engineered with safe coformers such as oxalic acid, succinic acid, salicylic acid, d,l-malic acid, and d,l-tartaric acid, to stabilize the drug as a cocrystal. All cocrystals were characterized by powder X-ray diffraction (PXRD), single crystal X-ray diffraction, and FT-IR as well as FT-Raman spectroscopy. Temozolomide cocrystals with organic acids (pK(a) 2-6) were found to be more stable than the reference drug under physiological conditions. The half-life (T(1/2)) of TMZ-oxalic and TMZ-salicylic acid measured by UV/Vis spectroscopy in pH 7 buffer is two times longer than that of TMZ (3.5 h and 3.6 h vs. 1.7 h); TMZ-succinic acid, TMZ-tartaric acid, and TMZ-malic acid also exhibited a longer half-life (2.3, 2.5, and 2.8 h, respectively). Stability studies at 40 °C and 75 % relative humidity (ICH conditions) showed that hydrolytic degradation of temozolomide in the solid state started after one week, as determined by PXRD, whereas its cocrystals with succinic acid and oxalic acid were intact at 28 weeks, thus confirming the greater stability of cocrystals compared to the reference drug. The intrinsic dissolution rate (IDR) profile of TMZ-oxalic acid and TMZ-succinic acid cocrystals in buffer of pH 7 is comparable to that of temozolomide. Among the temozolomide cocrystals examined, those with succinic acid and oxalic acid exhibited both an improved stability and a comparable dissolution rate to the reference drug.
The novel carboxamide-pyridine N-oxide synthon, sustained via N-H...O- hydrogen bonding and C-H...O interaction, is shown to assemble isonicotinamide N-oxide in a triple helix architecture and the same heterosynthon is exploited to synthesize cocrystals of barbiturate drugs with 4,4'-bipyridine N,N'-dioxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.