The production and stability of two novel myco-flocculants produced by river water fungus (RWF) were investigated. Screening tests were conducted to find suitable nutrients, pH, nutrient concentration, inoculum dose, and stability for two myco-flocculants L. squarrosulus (RWF5) and S. obclavatum (RWF6). The strains showed good flocculating activity in reducing turbidity of kaolin suspension while malt extract was used as nutrient source. Supernatants of RWF5 and RWF6 were able to reduce turbidity from 900±10 NTU to 46 NTU (95%) and 195 NTU (78%), respectively. In order to enhance the production, optimization of cultivation conditions were studied using a one-factor-at-a-time (OFAT) method. L. squarrosulus (RWF5) reduced 96% of turbidity at optimum conditions, comprising of 0.1% (w/v) malt extract, 3% (v/v) inoculum dose, and initial pH 7.0 for 6 days. The results of the compatible mixed culture showed good flocculation activity at 88% compared to a single culture of S. obclavatum at 78%. On the other hand, L. squarrosulus showed better turbidity reduction in the single culture rather than the mixed culture. The stability of L. squarrosulus and S. obclavatum supernatants showed excellent turbidity reduction over a wide pH range of 4-8 with the maximal flocculation rate of 96% and 90%, respectively, at pH 7.0. They also exhibited high turbidity removal ability in a temperature range of 4 oC – 55 oC for 24h with a maximum turbidity removal rate of 96% (RW5) and 87% (RW6) at 25 oC. Time stability of the L. squarrosulus supernatant showed good turbidity removal potential at above 90% at room temperature (28± 2 oC) and 85% at low temperature (4 oC) for 12 days. The high flocculating rate of the myco-flocculants and their good stability under wide range of temperature indicated their potentiality as biodegradable flocculants for water and wastewater treatment industry. ABSTRAK: Keberhasilan dan kestabilan dua myco-gumpalan baharu oleh kulat air sungai (RWF) telah dikaji. Ujian penapisan telah dijalankan untuk mencari nutrien sesuai, pH, kepekatan nutrien, dos inokulum dan kestabilan dua myco-gumpalan L. squarrosulus (RWF5) dan S. obclavatum (RWF6). Rantaian menunjukkan aktiviti gumpalan yang baik dalam mengurangkan kekeruhan air sungai dengan penggantungan koalin di mana ekstrak malt telah digunakan sebagai sumber nutrien. Larutan supernatan RWF5 dan RWF6, masing-masing mampu mengurangkan kekeruhan dari 900±10 NTU kepada 46 NTU (95%) dan 195 NTU (78%). Bagi meningkatkan pengeluaran, keadaan optimum bagi menggalakkan hasil telah diselidiki menggunakan kaedah Satu Faktor pada Tiap Masa (OFAT). Pada takat optimum, L. squarrosulus (RWF5) mengurangkan 96% kekeruhan, ianya terdiri daripada ekstrak malt 0.1% (w/v), dos inokulum 3% (v/v) dan pH awal 7.0 selama 6 hari. Keputusan kultur campuran yang sesuai menunjukkan aktiviti penggumpalan yang baik pada 88% berbanding kultur sendirian S. obclavatum pada 78%. Pada waktu sama, L. squarrosulus menunjukkan pengurangan kekeruhan yang lebih baik dalam kultur sendirian berbanding kultur campuran. Kestabilan larutan supernatan L. squarrosulus dan S. obclavatum menunjukkan pengurangan kekeruhan yang sangat baik pada pH yang luas iaitu 4-8 dengan kadar maksimum kekeruhan pada 96% dan 90%, pada pH 7.0 masing-masing. Keduanya menunjukkan kebolehan penyingkiran kekeruhan yang tinggi pada skala suhu 4 oC – 55 oC selama 24 jam dengan kadar nyah kekeruhan maksimum pada 96% (RW5) dan 87% (RW6) pada suhu 25 oC. Kestabilan masa larutan supernatan L. Squarrosulus menunjukkan potensi penyingkiran kekeruhan terbaik atas 90% pada suhu bilik (28± 2 oC) dan 85% pada suhu rendah (4 oC) selama 12 hari. Kadar gumpalan yang tinggi oleh myro-gumpalan dan kestabilan yang baik pada julat suhu yang luas menunjukkan potensinya sebagai agen biodegradasi gumpalan kepada air dan industri rawatan loji air.
Turbidity and suspended solids concentration promotes a number of negative effects on freshwater ecosystems. Conventionally suspended solids and turbidity are removed from raw water by various chemical coagulants but most of them are costly and non-ecofriendly. Whereas, the bioflocculants are environment-friendly and could be used as coagulants. Extracellular polymeric substances (EPS) produced by microorganisms play a definite role to reduce the turbidity of river water which can enhance the aesthetics of river water and other water uses. In this study, pellets /flocs have been observed of five filamentous fungi isolated from Pusu river water. The strains RWF-01, RWF-02, RWF-03, RWF-04 and RWF-05 showed a good entrapment capability and flocculating rate of 97.56%, 99.42%, 99.18%, 59.34% and 85.21% to kaolin suspension and 44.54%, 99.27%, 98.59%, 28.57% & 68.43% to river water respectively at 48h of culture time. The result showed the clay particles of river water and kaolin has entrapped by the microbial growth and, as a result, they reduced the turbidity of river water.
Several river water fungal strains (RWF-1 to RWF-6) were isolated to investigate the potential of having coagulant properties from the metabolites produced by the fungus. The myco-coagulant produced from the liquid-state process was characterized and tested for flocculation of kaolin water. Molecular identification of the fungal strain isolated from river water and characterization of the myco-coagulant produced by the strain are presented in this paper. The genomic DNA of the fungal 18S ribosomal ribonucleic-acid (rRNA) and 28S rRNA genes were used and the species was identified as Lentinus squarrosulus strain 7-4-2 RWF-5. The characterization of myco-coagulant by Fourier-transform infrared spectroscopy (FTIR) showed that hydroxyl, carbonyl, amide and amine groups as principal functional groups were present in the new myco-coagulant. The mean zeta potential value of the myco-coagulant was −7.0 mV while the kaolin solution was −25.2 mV. Chemical analyses of the extracellular myco-coagulant revealed that it contained total sugar (5.17 g/L), total carbohydrate (237 mg/L), protein (295.4 mg/L), glucosamine (1.152 mg/L); and exhibited cellulase activity (20 units/L) and laccase activity (6.22 units/L). Elemental analyses of C, H, O, N and S showed that the weight fractions of each element in the myco-coagulant was 40.9, 6.0, 49.8, 1.7 and 1.4%, respectively. The myco-coagulant showed 97% flocculation activity at a dose of 1.8 mg/L, indicating good flocculation performance compared to that of polyaluminum chloride (PAC). The present work revealed that the fungal strain, L. squarrosulus 7-4-2 RWF-5 is able to produce cationic bio-coagulant. The flocculation mechanism of the novel myco-coagulant was a combination of polymer bridging and charge neutralization.
Abstract-Turbidity from raw water is, usually, removed from by adding chemical coagulants. These chemicals are hazardous to human body and not much environmentally friendly. Therefore, this study was intended to discover microbial coagulant which would be a new replacement for the chemical coagulants. There are potential microorganisms, those can produce bioactive compounds, which can lead to different charges and surface properties. As such, the main goal of this project was to reduce turbidity of river water using natural coagulant. The discovered microbial coagulant showed promising results which can be considered as safe and environmentally friendly as compared to the conventional chemical coagulants. Thus far, a potential fungal strain is successfully identified which could reduce turbidity of water from 900 NTU to 54 NTU. It is expected that further optimization of the process parameters will help reduce the turbidity of the water. However, the full-scale application of the findings and the economic evaluation of the new coagulant is not determined yet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.