ObjectivesArtificial intelligence (AI) applications in neurosurgery have an increasing momentum as well as the growing number of implementations in the medical literature. In recent years, AI research define a link between neuroscience and AI. It is a connection between knowing and understanding the brain and how to simulate the brain. The machine learning algorithms, as a subset of AI, are able to learn with experiences, perform big data analysis, and fulfill human-like tasks. Intracranial surgical approaches that have been defined, disciplined, and developed in the last century have become more effective with technological developments. We aimed to define individual-safe, intracranial approaches by introducing functional anatomical structures and pathological areas to artificial intelligence.MethodsPreoperative MR images of patients with deeply located brain tumors were used for planning. Intracranial arteries, veins, and neural tracts are listed and numbered. Voxel values of these selected regions in cranial MR sequences were extracted and labeled. Tumor tissue was segmented as the target. Q-learning algorithm which is a model-free reinforcement learning algorithm was run on labeled voxel values (on optimal paths extracted from the new heuristic-based path planning algorithm), then the algorithm was assigned to list the cortico-tumoral pathways that aim to remove the maximum tumor tissue and in the meantime that functional anatomical tissues will be least affected.ResultsThe most suitable cranial entry areas were found with the artificial intelligence algorithm. Cortico-tumoral pathways were revealed using Q-learning from these optimal points.ConclusionsAI will make a significant contribution to the positive outcomes as its use in both preoperative surgical planning and intraoperative technique equipment assisted neurosurgery, its use increased.
This work is licensed under Creative Commons Attribution-NonCommercial 4.0 International License ÖZ Manyetik rezonans görüntüleme (MRI), bilgisayarlı tomografi (BT), pozitron emisyon tomografisi (PET), mamografi, ultrason ve röntgen gibi tıbbi görüntüleme teknikleri uzun yıllardan beri hastalıkların teşhisi, tanısı ve tedavisi için kullanılmıştır. Ancak hastalıkların daha erken teşhisi, uzmanların yoğunluğunu azaltma, çakışan uzman görüşlerini karara bağlama gibi nedenlerle, bu alanda makine öğrenmesi yöntemlerinden yararlanılmaktadır. Veri miktarının artması ile makine öğrenmesi yöntemleri görüntü işleme alanında yetersiz kalmış, gelişen matematiksel modeller ve donanımsal cihazlar sayesinde derin öğrenme bu alanda kendine geniş bir yer edinmiştir. Bu çalışmada derin öğrenme yöntemlerinin medikal görüntü işleme alanında uygulanması incelenmiştir. Segmentasyon, sınıflandırma ve hastalık teşhisi, görüntü oluşturma, dönüştürme ve iyileştirme alanlarında yapılan çalışmalardan oldukça güncel örnekler sunulmuş, yapılan çalışmalarda kullanılan algoritmalar kısaca açıklanmıştır. Ayrıca BraTS 2020 veri seti üzerinde derin öğrenme ile beyin tümör segmentasyonu gerçekleştirme denenmiş, sonuç olarak %86 dice benzerlik oranı ve %80 hassasiyet değeri elde edilmiştir. Bu çalışmanın medikal görüntüler üzerinde derin öğrenme yöntemleri ile yapılacak farklı çalışmalara yol gösterecek bir kaynak olması hedeflenmiştir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.