In the presented work an optical levitation technique performed by means of a focused laser beam, Mie and Raman spectroscopy have been utilized for measuring hygroscopic growth curves and composition of laboratory generated single ammonium sulfate (AS) and internally mixed ammonium sulfate-glutaric acid (GA) droplets in the micrometer range. The generated particles have been found to immediately supersaturate (above 45wt% for AS) at 297 K after capturing in the laser beam. Further increase of the relative humidity (RH) up to 85% does not dilute the droplets under the saturation point. A spontaneous hygroscopic growth takes place at 73.5-78% RH for pure AS. The particle grows with an average factor of 1.62 at the deliquescence relative humidity (DRH). Efflorescence of AS occurs at 43% RH with a corresponding concentration of more than 85wt%. Independent of the mixing ratios in ranges 25/75, 50/50, 75/25% AS/GA mixed particles don't exist as a metastable supersaturated solution droplets in the 35-85% RH range. Instead of growing with increasing relative humidity internally mixed particles build up a solid crystalline layer on the surface. This crystalline phase is not further influenced by ambient relative humidities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.