An algorithm framework based on CycleGAN and an upgraded dual-path network (DPN) is suggested to address the difficulties of uneven staining in pathological pictures and difficulty of discriminating benign from malignant cells. CycleGAN is used for color normalization in pathological pictures to tackle the problem of uneven staining. However, the resultant detection model is ineffective. By overlapping the images, the DPN uses the addition of small convolution, deconvolution, and attention mechanisms to enhance the model’s ability to classify the texture features of pathological images on the BreaKHis dataset. The parameters that are taken into consideration for measuring the accuracy of the proposed model are false-positive rate, false-negative rate, recall, precision, and F 1 score. Several experiments are carried out over the selected parameters, such as making comparisons between benign and malignant classification accuracy under different normalization methods, comparison of accuracy of image level and patient level using different CNN models, correlating the correctness of DPN68-A network with different deep learning models and other classification algorithms at all magnifications. The results thus obtained have proved that the proposed model DPN68-A network can effectively classify the benign and malignant breast cancer pathological images at various magnifications. The proposed model also is able to better assist the pathologists in diagnosing the patients by synthesizing the images of different magnifications in the clinical stage.
The diagnosis and treatment of patients in the healthcare industry are greatly aided by data analytics. Massive amounts of data should be handled using machine learning approaches to provide tools for prediction and categorization to support practitioner decision-making. Based on the kind of tumor, disorders like breast cancer can be categorized. The difficulties associated with evaluating vast amounts of data should be overcome by discovering an efficient method for categorization. Based on the Bayesian method, we analyzed the influence of clinic pathological indicators on the prognosis and survival rate of breast cancer patients and compared the local resection value directly using the lymph node ratio (LNR) and the overall value using the LNR differences in effect between estimates. Logistic regression was used to estimate the overall LNR of patients. After that, a probabilistic Bayesian classifier-based dynamic regression model for prognosis analysis is built to capture the dynamic effect of multiple clinic pathological markers on patient prognosis. The dynamic regression model employing the total estimated value of LNR had the best fitting impact on the data, according to the simulation findings. In comparison to other models, this model has the greatest overall survival forecast accuracy. These prognostic techniques shed light on the nodal survival and status particular to the patient. Additionally, the framework is flexible and may be used with various cancer types and datasets.
Image synthesis based on natural language description has become a research hotspot in edge computing in artificial intelligence. With the help of generative adversarial edge computing networks, the field has made great strides in high-resolution image synthesis. However, there are still some defects in the authenticity of synthetic single-target images. For example, there will be abnormal situations such as “multiple heads” and “multiple mouths” when synthesizing bird graphics. Aiming at such problems, a text generation single-target model SA-AttnGAN based on a self-attention mechanism is proposed. SA-AttnGAN (Attentional Generative Adversarial Network) refines text features into word features and sentence features to improve the semantic alignment of text and images; in the initialization stage of AttnGAN, the self-attention mechanism is used to improve the stability of the text-generated image model; the multistage GAN network is used to superimpose, finally synthesizing high-resolution images. Experimental data show that SA-AttnGAN outperforms other comparable models in terms of Inception Score and Frechet Inception Distance; synthetic image analysis shows that this model can learn background and colour information and correctly capture bird heads and mouths. The structural information of other components is improved, and the AttnGAN model generates incorrect images such as “multiple heads” and “multiple mouths.” Furthermore, SA-AttnGAN is successfully applied to description-based clothing image synthesis with good generalization ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.