The aim of the present work was to investigate the effect of physical structures on the properties of starch granules. Starches with a high amylopectin content possessing A- and B-type crystallinity were chosen for the study. The gelatinization temperature decreased in the following order: maize (A) > potato (B) > wheat (A) > barley (A), which did not reflect a correlation with the type of crystallinity. Low values of gelatinization temperature were accompanied with high free surface energy of the crystallites. It is proposed that these data are caused by different types of imperfections in starch crystals. Annealing resulted in an enhancement of the gelatinization temperature and a decrease of the free surface energy of the crystallites for all starches reflecting a partial improvement of crystalline perfection. A limited acid hydrolysis (lintnerization) of the starches decreased the gelatinization temperature because of a partial disruption of the crystalline lamellae and an increase of the amount of defects on the edges of the crystallites. Annealing of the lintnerized starches improved the structure of maize and potato starch, giving them similar structural and physicochemical parameters, which was opposite the behavior of the annealed sample from wheat. The possible nature of removable and nonremovable defects inside the crystalline region of the starch granules is discussed. It is concluded that, besides the allomorphic A- and B-types of crystal packing, physical defects in the crystals possess a major impact on starch gelatinization.
Thermodynamic characteristics defining gelatinisation (modelled as ‘melting’) processes for starches extracted from two sweet potato cultivars (Ayamurasaki and Sunnyred) grown in soil at different temperatures (15, 21, 27 or 33 °C) were studied using high sensitivity differential scanning calorimetry (DSC). The gelatinisation temperatures for all starches were elevated significantly with increasing growth temperature. A linear correlation between growth temperature and gelatinisation temperature of extracted starches was found for both cultivars. The increase of gelatinisation temperatures was associated with almost constant or slightly increased enthalpy (Ayamurasaki) but with moderate elevation of crystalline lamellae thickness (Sunnyred). Elevation of gelatinisation temperatures by 8‐9 °C by DSC for starches heated in 1.5 M aqueous KCl were found in comparison with aqueous starch dispersions. The crystalline polymorphic form was confirmed as A‐type using wide angle X‐ray scattering (WAXS). The values of the thermodynamic surface parameters characterising the faces of crystalline lamellae of these starches were calculated. Two endothermic peaks were observed by DSC for starches grown at 15 °C when suspended in 1.5 M KCl solution. The first peak was ascribed to the melting of B‐type structure while the second one was attributed to the melting of A‐type structure. As a conclusion it was suggested that these starches contain C‐type polymorphic structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.