The problem of portfolio optimization is to select a trading strategy which maximizes the expected terminal wealth. Since the stocks are traded at discrete random times in a real-world market, we are interested in a time sampling method. The sampling of stock price is obtained from the process of time sampling which is used in a point and figure chart. Point and figure (PF) chart displays the up and down movements of unbalanced stock prices. The basic idea is to describe essential movements of the unbalanced stock prices using a hidden Markov model. The model parameters are transition probability matrices. They are estimated using maximum likelihood method and expectation maximization algorithm. The estimation procedure involves change of measure. The model is then applied to the stock price of Bumi Resources Tbk. collected on a daily basis. The estimated parameters are used to calculate the optimal portfolio using a recursive algorithm. The results show that the discrete hidden Markov model can be applied to describe essential movements of the stock price. The best result gives 93.63% accuracy of the estimate of observation sequence with mean absolute percentage error (MAPE) 3.63%. The numerical calculation shows that the optimal logarithmic PF-portfolio increases the wealth.Keywords: point and figure portfolio; optimization portfolio; discrete hidden Markov model; expectation maximization algorithm; stock price of Bumi Resources Tbk. AbstrakMasalah pengoptimalan portofolio adalah pemilihan strategi perdagangan yang dapat memaksimalkan kekayaan terminal yang diharapkan. Karena di pasar dunia nyata, saham diperdagangkan pada waktu acak yang berbeda, sehingga kami tertarik pada metode pengambilan sampel waktu. Proses pengambilan sampel waktu diperoleh sampling harga saham yang digunakan dalam diagram point and figure (PF-chart). Grafik point and figure hanya menampilkan pergerakan naik atau turun harga saham yang tidak seimbang. Ide dasarnya adalah untuk mendeskripsikan pergerakan esensial dari harga saham yang tidak seimbang menggunakan model hidden Markov. Parameter dari model ini adalah matriks probabilitas transisi. Parameter diestimasi menggunakan metode maximum likelihood dan algoritma expectation maximization. Prosedur estimasi melibatkan perubahan ukuran. Model ini kemudian diaplikasikan pada harga saham Bumi Resources Tbk. dari tanggal 2 Januari 2007 sampai dengan 31 Januari 2011. Hasil estimasi parameter tersebut digunakan untuk menghitung portofolio optimal menggunakan algoritma rekursif. Hasil penelitian ini menunjukkan bahwa model hidden Markov diskrit dapat diterapkan untuk menggambarkan pergerakan esensial dari harga saham. Model terbaik memberikan akurasi 93.63% dari estimasi deretan observasi dengan mean absolute percentage error (MAPE) 3,63% dan 5 faktor penyebab kejadian. Perhitungan numerik menunjukkan bahwa logaritma portofolio-PF yang optimal dapat meningkatkan kekayaan.Kata kunci: portofolio point and figure; optimalisasi portofolio; model hidden Markov diskrit; algoritma expectation maximization; harga saham PT Bumi Resources.
Structural equation modeling (SEM) is one of multivariate techniques that can estimates a series of interrelated dependence relationships from a number of endogenous and exogenous variables, as well as latent (unobserved) variables simultaneously. To estimates their parameters, SEM based on structure covariance matrix, there are severals methods can be used as estimation methods, namely maximum likelihood (ML), weighted least squares (WLS), generalized least squares (GLS) and unweighted least squares (ULS). The purpose of this paper are to learn these methods in estimating SEM parameters and to compare their consistency, accuracy and sensitivity based on sample size and multinormality assumption of observed variables. Using a fully crossed design, data were generated for 2 conditions of normality and 5 different sample sizes. The result showed that when data are normally distributed, ML and GLS more consistent and accurate then the other methods
Pada artikel ini dikaji suatu metode yang dapat digunakan untuk meramalkan harga saham. Tujuan dari penelitian ini adalah memperkenalkan metode Support Vector Regression dengan Algoritma Grid Search untuk memprediksi harga saham INDF dan MYOR serta melakukan peramalan satu periode ke depan pada kedua perusahaan tersebut. Hasil kajian menghasilkan model prediksi terbaik untuk data saham INDF dengan nilai MAPE dan pada data testing berturut-turut sebesar 5.570% dan 79.9%, sedangkan untuk data saham MYOR diperoleh nilai MAPE dan pada data testing berturut-turut sebesar 2.954% dan 96%. Hasil penelitian juga menunjukkan prediksi harga saham INDF dan MYOR untuk satu periode selanjutnya (31 Desember 2021) berturut-turut sebesar Rp 6326.88/lembar dan Rp 2039.31/lembar.
<p>Perilaku nilai tukar Rupiah terhadap Dollar Amerika dari tahun 1998 sampai dengan 2009 dicoba dimodelkan dengan menggunakan deret waktu <em>Hidden </em>Markov tiga waktu sebelumnya. Pendugaan parameter model dilakukan menggunakan Metode <em>Maximum Likelihood </em>dan pendugaan ulang menggunakan metode <em>Expectation Maximization. </em>Hasil yang diperoleh cukup baik karena sudah menggambarkan secara umum perilaku nilai tukar Rupiah. Galat antara nilai harapan dengan nilai sebenarnya relatif cukup kecil.</p>
Perilaku nilai tukar Rupiah terhadap $US dari tahun 1998 sampai dengan 2007 dicoba dimodelkan dengan menggunakan deret waktu Hidden Markov satu waktu sebelumnya. Pendugaan parameter model dilakukan menggunakan Metode Maximum Likelihood dan pendugaan ulang menggunakan metode Expectation Maximization. Hasil yang diperoleh cukup baik karena sudah menggambarkan secara umum perilaku nilai tukar Rupiah. Galat antara nilai harapan dengan nilai sebenarnya relatif cukup kecil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.