The Automobile pollution is the major source of pollution. The majority of the environmental pollution is from the two-wheeler automobiles due to their large number. A study on nano-particle reveals that the ratio of surface area of nano-particle to the volume of the nano-particle is inversely proportional to the radius of the nano-particle. So
Helically coiled heat exchangers are used in order to obtain a large heat transfer area per unit volume and to enhance the heat transfer coefficient on the inside surface. The enhancement in heat transfer due to helical coils has been reported by many researchers by experimental setups for the estimation of the heat transfer characteristics. In this thesis the experimental results are compared with the CFD calculation results using the CFD software package ANSYS CFX used by the many researchers. Further a computational study has been accomplished to determine the effects of heat transfer in the helical coiled heat exchanger by considering the parameters like pitch length of helical coil and mass flow rate of fluids in helical coil heat exchanger. It is concluded that the CFD analysis results fairly matches with the Experimental Results. A comparison with experimental results and CFD simulations has proved that by decreasing the pitch length of helical coil and relative velocity of fluids in helical coil heat exchanger, increases heat transfer rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.