This study demonstrates a dose-dependent response of Trichoderma harzianum Th-56 in improving drought tolerance in rice by modulating proline, SOD, lipid peroxidation product and DHN / AQU transcript level, and the growth attributes. In the present study, the effect of colonization of different doses of T. harzianum Th-56 strain in rice genotypes were evaluated under drought stress. The rice genotypes treated with increasing dose of T. harzianum strain Th-56 showed better drought tolerance as compared with untreated control plant. There was significant change in malondialdehyde, proline, higher superoxide dismutase level, plant height, total dry matter, relative chlorophyll content, leaf rolling, leaf tip burn, and the number of scorched/senesced leaves in T. harzianum Th-56 treated rice genotypes under drought stress. This was corroborated with altered expression of aquaporin and dehydrin genes in T. harzianum Th-56 treated rice genotypes. The present findings suggest that a dose of 30 g/L was the most effective in improving drought tolerance in rice, and its potential exploitation will contribute to the advancement of rice genotypes to sustain crop productivity under drought stress. Interaction studies of T. harzianum with three aromatic rice genotypes suggested that PSD-17 was highly benefitted from T. harzianum colonization under drought stress.
Salt stress is one of the major abiotic stresses limiting crop growth and productivity. This work investigated the potential of five ST isolates of Trichoderma harzianum (Th-13, Th-14, Th-19, Th-33 and Th-50) applied through seed biopriming in reducing the detrimental effects of salinity stress on wheat (Triticum aestivum L.). Growth, physiological and biochemical parameters were studied to characterize salt tolerance. One factor was treatments (T1, T2, T3, T4, T5 and T6) and second factor was four levels of salt stress viz., 0, 2, 4 and 6 dsm −1 . In germination test, most of the isolates (Th-14, Th-19 and Th-13) were effective in improving germination percentage and reducing RPG during salinity stress. Seedlings raised from ST Trichoderma isolates had significantly higher root and shoot lengths, CC and MSI than control at all stress levels. The treatments Th-14, Th-19 and Th-13 showed lower accumulation of MDA content whereas proline content and phenolics were higher in treated plants under both nonsaline and saline conditions. Highest MDA content was observed in control at salt stress level of 6 dSm −1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.