Collective scattering of gyrouon radiation and its potennal for plasma diapostics was investigated using the WFAS stellamor. The ion temperature was determined from thermal spectra in neuwd-beom-heated plasmas. The excitation of a n m w band plasma wave by a non.thermd ion component w a observed and the wave characteristics wece investigated experimentally. The results constitute an important step toward a-pmicle diagnostic via scattering of powerful microwave radiation.
Experimental and theoretical investigations of lower hybrid (LH) turbulence in the W7-AS stellarator are presented. The turbulence is excited by an ion beam, which is generated by a weak neutral hydrogen beam injected transversely to the confining magnetic field. The instability is detected by collective Thomson scattering of powerful gyrotron radiation. From the measured density dependence of the frequency it was identified as an LH type of instability. The spectrum is characterized by a narrow bandwidth in spite of the inherently poor radial resolution of the backscattering geometry. The theoretical model of an LH instability driven by a transverse fast ion component under the double resonance condition (coincidence of the LH frequency with a high cyclotron harmonic of the fast ions) is developed. The instability growth rate is derived. The stabilizing effect of high bulk ion temperatures was observed experimentally, in accordance with theoretical modelling. An instability saturation mechanism similar to the well known stochastic ion heating is proposed.
Collective Thomson scattering (CTS) of electromagnetic radiation from thermal plasma fluctuations in principle allows the velocity distribution of plasma ions and its composition in the plasma to be measured. The use of powerful microwave radiation from gyrotrons opens new perspectives for the application of CTS, which is considered to be a promising candidate for alpha-particle diagnostics in reactor-size tokamaks with D/T operation.We have performed the first experiments at W7-AS with different scattering geometries to prove the applicability of gyrotrons for CTS. The experiments were performed with a 140 GHz gyrotron which is routinely used for ECRH, delivering a power of 0.45 MW. The receiver antenna and detection system for the registration of CTS spectra were especially designed for the scattering experiment. In backscattering experiments, which have inherently no spatial resolution, we have measured a transversely propagating, non-thermal lower-hybrid turbulence, which is driven by perpendicularly injected fast particles from a diagnostic neutral beam. The instability is excited by the beam ions under double-resonance conditions, where the LH frequency coincides with some harmonic of the beam ion gyrofrequency. For scattering geometries with the scattering wavevector not perpendicular to the magnetic field, thermal density fluctuations in the plasma were experimentally detected. The ion temperatures derived from these thermal spectra agree well with other diagnostics.A modified scattering geometry (90 • scattering) allows local measurements of the ion temperature and is considered a prototype for the design of a routine diagnostic for iontemperature measurements.
In this work, we compare the values of 15 convective indices obtained from radiosonde and microwave temperature and water vapor profiles simultaneously measured over Nizhny Novgorod (56.2°N, 44°E) during 5 convective seasons of 2014–2018. A good or moderate correlation (with coefficients of ~0.7–0.85) is found for most indices. We assess the thunderstorm prediction skills with a lead time of 12 h for each radiosonde and microwave index. It is revealed that the effectiveness of thunderstorm prediction by microwave indices is much better than by radiosonde ones. Moreover, a good correlation between radiosonde and microwave values of a certain index does not necessarily correspond to similar prediction skills. Eight indices (Showalter Index, Maximum Unstable Convective Available Potential Energy (CAPE), Total Totals index, TQ index, Jefferson Index, S index, K index, and Thompson index) are regarded to be the best predictors from both the true skill statistics (TSS) maximum and Heidke skill score (HSS) maximum points of view. In the case of radiosonde data, the best indices are the Jefferson Index, K index, S index, and Thompson index. Only TSS and HSS maxima for these indices are close to the microwave ones, whereas the prediction skills of other radiosonde indices are essentially worse than in the case of microwave data. The analysis suggests that the main possible reason of this discrepancy is an unexpectedly low quality of radiosonde data.
Ground-based microwave radiometers are increasingly used in operational meteorology and nowcasting. These instruments continuously measure the spectra of downwelling atmospheric radiation in the range 20–60 GHz used for the retrieval of tropospheric temperature and water vapor profiles. Spectroscopic uncertainty is an important part of the retrieval error budget, as it leads to systematic bias. In this study, we analyze the difference between observed and simulated microwave spectra obtained from more than four years of microwave and radiosonde observations over Nizhny Novgorod (56.2° N, 44° E). We focus on zenith-measured and elevation-scanning data in clear-sky conditions. The simulated spectra are calculated by a radiative transfer model with the use of radiosonde profiles and different absorption models, corresponding to the latest spectroscopy research. In the case of zenith-measurements, we found a systematic bias (up to ~2 K) of simulated spectra at 51–54 GHz. The sign of bias depends on the absorption model. A thorough investigation of the error budget points to a spectroscopic nature of the observed differences. The dependence of the results on the elevation angle and absorption model can be explained by the basic properties of radiative transfer and by cloud contamination at elevation angles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.