In this article, we present a least-squares method to compute freeform surfaces of a lens with parallel incoming and outgoing light rays, which is a transport problem corresponding to a non-quadratic cost function. The lens can transfer a given emittance of the source into a desired illuminance at the target. The freeform lens design problem can be formulated as a Monge-Ampère type differential equation with transport boundary condition, expressing conservation of energy combined with the law of refraction. Our least-squares algorithm is capable to handle a non-quadratic cost function, and provides two solutions corresponding to either convex or concave lens surfaces.
The purpose of this paper is to present a method for the design of two-reflector optical systems that transfer a given energy density of the source to a desired energy density at the target. It is known that the two-reflector design problem gives rise to a Monge-Ampère (MA) equation with transport boundary condition. We solve this boundary value problem using a recently developed least-squares algorithm (Prins et al 2015 J. Sci. Comput. 37 B937-61). It is one of the few numerical algorithms capable to solve these type of problems efficiently. The least-squares algorithm can provide two solutions of the MA problem, one is concave and the other one is convex. The reflectors are validated for several numerical examples by a ray-tracer based on Monte-Carlo simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.