Background Asthma exacerbations evoke emergency room visits, progressive loss of lung function and increased mortality. Environmental and industrial toxicants exacerbate asthma, although the underlying mechanisms are unknown. We assessed whether 3 distinct toxicants, salicylic acid (SA), toluene diisocyanate (TDI), and 1-chloro-2,4-dinitrobenzene (DNCB) induced airway hyperresponsiveness (AHR) through modulating excitation-contraction coupling in human airway smooth muscle (HASM) cells. The toxicants include a non-sensitizing irritant (SA), respiratory sensitizer (TDI) and dermal sensitizer (DNCB), respectively. We hypothesized that these toxicants induce AHR by modulating excitation-contraction (EC) coupling in airway smooth muscle (ASM) cells. Methods Carbachol-induced bronchoconstriction was measured in precision-cut human lung slices (hPCLS) following exposure to SA, TDI, DNCB or vehicle. Culture supernatants of hPCLS were screened for mediator release. In HASM cells treated with the toxicants, surrogate readouts of EC coupling were measured by phosphorylated myosin light chain (pMLC) and agonist-induced Ca 2+ mobilization ([Ca 2+ ] i ). In addition, Nrf-2-dependent antioxidant response was determined by NAD(P) H quinone oxidoreductase 1 (NQO1) expression in HASM cells. Results In hPCLS, SA, but not TDI or DNCB, potentiated carbachol-induced bronchoconstriction. The toxicants had little effect on release of inflammatory mediators, including IL-6, IL-8 and eotaxin from hPCLS. In HASM cells, TDI amplified carbachol-induced MLC phosphorylation. The toxicants also had little effect on agonist-induced [Ca 2+ ] i. Conclusion SA, a non-sensitizing irritant, amplifies agonist-induced bronchoconstriction in hPCLS via mechanisms independent of inflammation and Ca 2+ homeostasis in HASM cells. The sensitizers TDI and DNCB, had little effect on bronchoconstriction or inflammatory mediator release in hPCLS. Implications Our findings suggest that non-sensitizing irritant salicylic acid may evoke AHR and exacerbate symptoms in susceptible individuals or in those with underlying lung disease. Electronic supplementary material The online version of this article (10.1186/s12931-019-1034-x) contains supplementary material, which is available to authorized users.
The recent discovery of sensory (tastant and odorant) G protein-coupled receptors on the smooth muscle of human bronchi suggests unappreciated therapeutic targets in the management of obstructive lung diseases. Here we have characterized the effects of a wide range of volatile odorants on the contractile state of airway smooth muscle (ASM) and uncovered a complex mechanism of odorant-evoked signaling properties that regulate excitation-contraction (E-C) coupling in human ASM cells. Initial studies established multiple odorous molecules capable of increasing intracellular calcium ([Ca2+]i) in ASM cells, some of which were (paradoxically) associated with ASM relaxation. Subsequent studies showed a terpenoid molecule (nerol)-stimulated OR2W3 caused increases in [Ca2+]i and relaxation of ASM cells. Of note, OR2W3-evoked [Ca2+]i mobilization and ASM relaxation required Ca2+ flux through the store-operated calcium entry (SOCE) pathway and accompanied plasma membrane depolarization. This chemosensory odorant receptor response was not mediated by adenylyl cyclase (AC)/cyclic nucleotide-gated (CNG) channels or by protein kinase A (PKA) activity. Instead, ASM olfactory responses to the monoterpene nerol were predominated by the activity of Ca2+-activated chloride channels (TMEM16A), including the cystic fibrosis transmembrane conductance regulator (CFTR) expressed on endo(sarco)plasmic reticulum. These findings demonstrate compartmentalization of Ca2+ signals dictates the odorant receptor OR2W3-induced ASM relaxation and identify a previously unrecognized E-C coupling mechanism that could be exploited in the development of therapeutics to treat obstructive lung diseases.
Bronchodilators and anti-inflammatory agents are the mainstream treatments in chronic obstructive and pulmonary disease (COPD) and asthma. The combination of β2 adrenergic receptor (β2AR) agonists and muscarinic antagonists shows superior bronchoprotective effects compared to these agents individually. Navafenterol (AZD8871) is a single-molecule, dual pharmacology agent combining muscarinic antagonist and β2AR agonist functions, currently in development as a COPD therapeutic. In precision-cut human lung slices (hPCLS), we investigated the bronchoprotective effect of navafenterol against two non-muscarinic contractile agonists, histamine and thromboxane A2 (TxA2) analog (U46619). Navafenterol pre-treatment significantly attenuated histamine-induced bronchoconstriction and β2AR antagonist propranolol reversed this inhibitory effect. TxA2 analog-induced bronchoconstriction was attenuated by navafenterol pre-treatment, albeit to a lesser magnitude than that of histamine-induced bronchoconstriction. Propranolol completely reversed the inhibitory effect of navafenterol on TxA2 analog-induced bronchoconstriction. In the presence of histamine or TxA2 analog, navafenterol exhibits bronchoprotective effect in human airways and it is primarily mediated by β2AR agonism of navafenterol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.