ABSTRACT:Earthquake is one of the most divesting natural events that threaten human life during history. After the earthquake, having information about the damaged area, the amount and type of damage can be a great help in the relief and reconstruction for disaster managers. It is very important that these measures should be taken immediately after the earthquake because any negligence could be more criminal losses. The purpose of this paper is to propose and implement an automatic approach for mapping destructed buildings after an earthquake using pre-and post-event high resolution satellite images. In the proposed method after preprocessing, segmentation of both images is performed using multi-resolution segmentation technique. Then, the segmentation results are intersected with ArcGIS to obtain equal image objects on both images. After that, appropriate textural features, which make a better difference between changed or unchanged areas, are calculated for all the image objects. Finally, subtracting the extracted textural features from pre-and post-event images, obtained values are applied as an input feature vector in an artificial neural network for classifying the area into two classes of changed and unchanged areas. The proposed method was evaluated using WorldView2 satellite images, acquired before and after the 2010 Haiti earthquake. The reported overall accuracy of 93% proved the ability of the proposed method for post-earthquake buildings change detection.
<p><strong>Abstract.</strong> The collapse of buildings during the earthquake is a major cause of human casualties. Furthermore, the threat of earthquakes will increase with growing urbanization and millions of people will be vulnerable to earthquakes. Therefore, building damage detection has gained increasing attention from the scientific community. The advent of Light Detection And Ranging (LiDAR) technique makes it possible to detect and assess building damage in the aftermath of earthquake disasters using this data. The purpose of this paper is to propose and implement an object-based approach for mapping destructed buildings after an earthquake using LiDAR data. For this purpose, first, multi-resolution segmentation of post-event LiDAR data is done after building extraction from pre-event building vector map. Then obtained image objects from post-event LiDAR data is located on the pre-event satellite image. After that, appropriate features, which make a better difference between damage and undamaged buildings, are calculated for all the image objects on both data. Finally, appropriate training samples are selected and imported into the object-based support vector machine (SVM) classification technique for detecting the building damage areas. The proposed method was tested on the data set after the 2010 earthquake of Port-au-Prince, Haiti. Quantitative evaluation of results shows the overall accuracy of 92&thinsp;% by this method.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.