Indoor operation of unmanned aerial vehicles (UAVs) poses many challenges due to the lack of GPS signal and cramped spaces. The presence of obstacles in an unfamiliar environment requires reliable state estimation and active algorithms to prevent collisions. In this paper, we present a teleoperated quadrotor UAV platform equipped with an onboard miniature computer and a minimal set of sensors for this task. The platform is capable of highly accurate stateestimation, tracking of desired velocity commanded by the user and ensuring collision-free navigation. The robot estimates its linear velocity through a Kalman filter integration of inertial and optical flow (OF) readings with corresponding distance measurements. An RGB-D camera serves the purpose of providing visual feedback to the operator and depth measurements to build a probabilistic, robo-centric obstacle model, allowing the robot to avoid collisions. The platform is thoroughly validated in experiments in an obstacle rich environment. 1 M. Odelga and H. H. Bülthoff are with the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.