The paper is concerned with the development of a data acquisition system for the measurement of temperature used for metal cutting. In this study, machining tests were performed and an analysis of the temperature and wear of the cutting tool is presented herein. In metal cutting operations, the wear of tools is generated largely due to the heat emitted from the cutting zone. Therefore, a coolant is often used to cool down the cutting area and protect the cutting tools. However, because of environmental concerns, engineers now try to avoid using cutting coolants and perform cutting operations in almost dry conditions. In this study, a mild-steel round bar was turned at various feed rates, depths of cut and cutting speeds. A data acquisition system was built to record the cutting temperature while turning the bar. From the study, it is evident that certain combinations of cutting parameters result in higher temperatures than those produced in other experiments. It was established that the depth of cut and cutting speed at their highest values (1 mm and 250 m/min, respectively) contribute largely to the high surface temperature, while the effect of feed rate is intangible. Increasing the cutting speed results in an increase in the cutting temperature. A similar result was observed when the depth of cut was increased. However, increases in feed rate did not significantly cause increases in cutting temperature. In addition, cutting inserts were examined under a scanning electron microscope (SEM) to quantify the tool wear in each experiment. A correlation between tool wear and temperature is clearly noticed. The study concluded that the combination of variations in cutting speed and depth of cut results in severe tool wear action on the tool's flank face as a result of the intensive heat generated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.