Background: Previous studies demonstrated a health improving effect in patients underwent an automatic vibratory massage taking 10 minutes. One of reasons that may explain a healing effect of the automatic massage is a stimulated increase in both blood circulation through vascular system and effective size of blood vessels.Objective: This paper aims to quantify a contribution of the automatic mechanical massage of low extremities into the observed reduction in arterial blood pressure and explain this effect.Material and Methods: In this study, the low extremities of male and female patients were exposed to low frequency (12 Hz) mechanical vibrations for 10 minutes and the change in systolic and diastolic arterial blood pressures before and after this procedure was measured.Results: The experiments showed there is a reduction in systolic and diastolic arterial blood pressures after vibrational massage. There were corresponding 3.5±1.8 mmHg and 3.1±1.6 mm Hg arterial blood pressure reductions among men and 5.5±3.2 mm Hg and 2.2±1.2 mm Hg reductions among women.Conclusion: We explained this effect by increasing effective radius of blood vessels. Based on the Hagen-Poiseuille equation, we made estimates for the relative change in the effective radius of blood vessels. They gave the 0.7% and 1.3% increases in the effective radius of blood vessels in low extremities in men during systole and diastole, respectively, and the corresponding 1.1% and 0.6% increases in the effective radius of blood vessels of low extremities in women during the same periods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.