Healthcare delivery in African nations has long been a worldwide issue, which is why the United Nations and World Health Organization seek for ways to alleviate this problem and thereby reduce the number of lives that are lost every year due to poor health facilities and inadequate health care administration. Healthcare delivery concerns are most predominant in Nigeria and it became imperatively clear that the system of medical diagnosis must be automated. This paper explores the potential of machine learning technique (decision tree) in development of a malaria diagnostic system. The decision tree algorithm was used in the development of the knowledge base. Microsoft Access and Java programming language were used for database and user interfaces, respectively. During the diagnosis, symptoms are provided by the patient in the diagnostic system and a match is found in the knowledge base.
Healthcare delivery in African nations has long been a worldwide issue, which is why the United Nations and World Health Organization seek for ways to alleviate this problem and thereby reduce the number of lives that are lost every year due to poor health facilities and inadequate health care administration. Healthcare delivery concerns are most predominant in Nigeria and it became imperatively clear that the system of medical diagnosis must be automated. This paper explores the potential of machine learning technique (decision tree) in development of a malaria diagnostic system. The decision tree algorithm was used in the development of the knowledge base. Microsoft Access and Java programming language were used for database and user interfaces, respectively. During the diagnosis, symptoms are provided by the patient in the diagnostic system and a match is found in the knowledge base.
Healthcare delivery in African nations has long been a worldwide issue, which is why the United Nations and World Health Organization seek for ways to alleviate this problem and thereby reduce the number of lives that are lost every year due to poor health facilities and inadequate health care administration. Healthcare delivery concerns are most predominant in Nigeria and it became imperatively clear that the system of medical diagnosis must be automated. This paper explores the potential of machine learning technique (decision tree) in development of a malaria diagnostic system. The decision tree algorithm was used in the development of the knowledge base. Microsoft Access and Java programming language were used for database and user interfaces, respectively. During the diagnosis, symptoms are provided by the patient in the diagnostic system and a match is found in the knowledge base.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.