Background and Purpose:
Susceptibility-based MRI offers a unique opportunity to study neurological diseases such as multiple sclerosis (MS). In this work, we assessed a three-dimensional segmented echo-planar-imaging (3D-EPI) sequence to rapidly acquire high-resolution T2*-weighted and phase contrast images of the whole brain. We also assessed if these images could depict important features of MS at clinical field strength, and we tested the effect of a gadolinium-based contrast agent (GBCA) on these images.
Materials and Methods:
The 3D-EPI acquisition was performed on four healthy volunteers and fifteen MS cases on a 3T scanner. The 3D sagittal images of the whole brain were acquired with a voxel size of 0.55 × 0.55 × 0.55 mm3 in less than 4 minutes. For the MS cases, the 3D-EPI acquisition was performed before, during, and after intravenous GBCA injection.
Results:
Both T2*-weighted and phase-contrast images from the 3D-EPI acquisition were sensitive to the presence of lesions, parenchymal veins, and tissue iron. Conspicuity of the veins was enhanced when images were obtained during injection of GBCA.
Conclusions:
We propose this rapid imaging sequence for investigating, in a clinical setting, the spatiotemporal relationship between small parenchymal veins, iron deposition, and lesions in MS patient brains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.