Managing a multi-reservoir system is complicated, due to conflicting interests among various objectives. This study proposes an optimization-based approach for the operations of a multi-reservoir system. An advanced real-time control technique, Model Predictive Control (MPC), is adopted to control a multi-reservoir system with two control objectives, i.e., flood mitigation and water conservation. The case study area is the Sittaung River basin in Myanmar, where the current reservoir operating rule needs to be improved for a more effective operation. A comparison between an MPC-based operation and the current operation is presented by using performance indicators. The result shows a reduction of the system’s vulnerability by 0.9 percent using MPC. Due to the physical constraint of the reservoirs, it is impossible to completely eliminate the flood risk at Taungoo City during high inflow events. However, the results indicate that the potential flood risk can be mitigated by improving the current operating rule.
This paper presents an extended Model Predictive Control scheme called Multi-objective Model Predictive Control (MOMPC) for real-time operation of a multi-reservoir system. The MOMPC approach incorporates the non-dominated sorting genetic algorithm II (NSGA-II), multi-criteria decision making (MCDM) and the receding horizon principle to solve a multi-objective reservoir operation problem in real time. In this study, a water system is simulated using the De Saint Venant equations and the structure flow equations. For solving multi-objective optimization, NSGA-II is used to find the Pareto-optimal solutions for the conflicting objectives and a control decision is made based on multiple criteria. Application is made to an existing reservoir system in the Sittaung river basin in Myanmar, where the optimal operation is required to compromise the three operational objectives. The control objectives are to minimize the storage deviations in the reservoirs, to minimize flood risks at a downstream vulnerable place and to maximize hydropower generation. After finding a set of candidate solutions, a couple of decision rules are used to access the overall performance of the system. In addition, the effect of the different decision-making methods is discussed. The results show that the MOMPC approach is applicable to support the decision-makers in real-time operation of a multi-reservoir system.
正会員 工修 土木研究所ICHARM(〒305-8516 つくば市南原1-6)4 正会員 博士(工) 土木研究所ICHARM(同上) 5 正会員 PhD 土木研究所ICHARM(同上) Flood inundation caused by cyclone Nargis is simulated on the Irrawaddy delta with a newly developed two-dimensional rainfall-runoff-inundation model. The primary objective of the model is to provide useful information for emergency responses during or at immediately after flood disasters. This study applies the model to simulate the storm surge flooding with the boundary condition of surge water level at the coastal line. The simulated result was compared with an inundation map produced by remote sensing. The reasonable agreement between the simulated and the remotely sensed inundation map confirmed the model reproducibility for storm surge inundations at the large areas. The simulation shows also the importance for considering rainfall-runoff processes for adequate inundation simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.