This study was designed to evaluate the pathophysiological response of the cochlea following long-term intracochlear electrical stimulation using a poorly charge-balanced stimulus regime, leading to direct current (DC) levels >0.1 microA. Four normal-hearing adult cats were bilaterally implanted with scala tympani electrode arrays and unilaterally stimulated for periods up to 2200 h. Stimuli consisted of 50 micros monophasic current pulses presented at 2000 pulses per second (pps) per channel, and resulted in DC levels of 0.4-2.8 microA. Both acoustic and electrical (EABR) evoked potentials were periodically recorded during the stimulation program. Frequency-specific stimuli indicated that an extensive and widespread hearing loss occurred over the 4-24 KHz region in all stimulated cochleae, although the 2 KHz region exhibited thresholds close to normal in some animals, despite long-term implantation and chronic stimulation. Longitudinal EABRs showed a statistically significant increase in threshold for three of the four animals. Histopathological evaluation of the cochleae revealed a highly significant reduction in ganglion cell density in stimulated cochleae compared with their controls. Spiral ganglion cell loss was significantly correlated with the degree of inflammation, duration of electrical stimulation, and the level of DC. In conclusion, the present study highlights the potential for neural damage following stimulation using poorly charge-balanced stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.