Theoretical conformational analysis was used to study the spatial structure and conformational properties of myelopeptides, bone-marrow peptide mediators. The low-energy conformations of three hexapeptides MP-1 (Phe-Leu-Gly-Phe-Pro-Thr), MP-2 (Leu-Val-Val-Tyr-Pro-Trp), and MP-3 (Leu-Val-Cys-Tyr-ProGln) were found, the values of dihedral angles of the backbone and side chains of the amino acid residues constituting these peptides were determined, and the energies of intra-and interresidual interactions were estimated.
The structures and conformational peculiarities of five members of the callatostatin family of neuropeptides, i.e. Leu- and Met-callatostatins, ranging in size from 8 to 16 amino acid residues have been investigated by a theoretical conformational analysis method. A comparative analysis of the conformational flexibilities of Met-callatostatin with those of the hydroxylated analogues, [Hyp2]- and [Hyp3]-Met-callatostatin has been carried out. Helically packed C-terminal pentapeptide in the structure of all investigated Leu-callatostatins are shown to be possible. The reason for the great number low-energy conformers for the callatostatin N-terminus is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.