We performed a risk assessment of metal exposure to population subgroups living on, and growing food on, urban sites. We modeled uptake of cadmium, copper, nickel, lead, and zinc for a selection of commonly grown allotment and garden vegetables. Generalized linear cross-validation showed that final predictions of Cd, Cu, Ni, and Zn content of food crops were satisfactory, whereas the Pb uptake models were less robust. We used predicted concentrations of metals in the vegetables to assess the risk of exposure to human populations from homegrown food sources. Risks from other exposure pathways (consumption of commercially produced foodstuffs, dust inhalation, and soil ingestion) were also estimated. These models were applied to a geochemical database of an urban conurbation in the West Midlands, United Kingdom. Risk, defined as a "hazard index," was mapped for three population subgroups: average person, highly exposed person, and the highly exposed infant (assumed to be a 2-year-old child). The results showed that food grown on 92% of the urban area presented minimal risk to the average person subgroup. However, more vulnerable population subgroups (highly exposed person and the highly exposed infant) were subject to hazard index values greater than unity. This study highlights the importance of site-specific risk assessment and the "suitable for use" approach to urban redevelopment.
Summary
Isotopically exchangeable cadmium and zinc (‘E values’) were measured on soils historically contaminated by sewage sludge and ones on zinc‐rich mine spoil. The E‐value assay involves determining the distribution of an added metal isotope, e.g. 109Cd, between the solid and solution phases of a soil suspension. The E values for both metals were found to be robust to changes in the position of the metal solid⇔solution equilibrium, even though the concentration of dissolved metal varied substantially with electrolyte composition and soil:solution ratio. Concentration of labile metal was also invariant over isotope equilibration times of 2–6 days. The use of a submicron filtration procedure, in addition to centrifuging at 2200 g, proved unnecessary if 0.1 m Ca electrolyte was used to suspend the soils.
The proportion of ‘fixed’ metal, in non‐labile forms, apparently increased with increasing pH, although there was considerable variation in both sets of contaminated soil. Zinc and cadmium in the sludged soils were similarly labile. Several possible methods for the measurement of chemically reactive metal were explored for comparison with E values, including single extraction with 1 m CaCl2 and a ‘pool depletion’ (PD) method. The latter involves comparing solid⇔solution metal equilibria in two electrolytes with differing degrees of (solution) complex formation, 0.1 m Ca(NO3)2 and CaCl2. Both the single extraction and the PD method gave good estimates of E value for Cd, although the single extraction was more consistent. Neither technique was a useful substitute for determining labile Zn, because of weak chloro‐complexation of Zn2+. We therefore suggest that 1 m CaCl2 extraction of Cd alone be used as an alternative to E values to avoid the inconvenience of isotopic dilution procedures.
Conversion of tropical peat swamp forest to drainage-based agriculture alters greenhouse gas (GHG) production, but the magnitude of these changes remains highly uncertain. Current emissions factors for oil palm grown on drained peat do not account for temporal variation over the plantation cycle and only consider CO2 emissions. Here, we present direct measurements of GHGs emitted during the conversion from peat swamp forest to oil palm plantation, accounting for CH4 and N2O as well as CO2. Our results demonstrate that emissions factors for converted peat swamp forest is in the range 70–117 t CO2 eq ha−1 yr−1 (95% confidence interval, CI), with CO2 and N2O responsible for ca. 60 and ca. 40% of this value, respectively. These GHG emissions suggest that conversion of Southeast Asian peat swamp forest is contributing between 16.6 and 27.9% (95% CI) of combined total national GHG emissions from Malaysia and Indonesia or 0.44 and 0.74% (95% CI) of annual global emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.