The Javalambre Photometric Local Universe Survey (J-PLUS ) is an ongoing 12-band photometric optical survey, observing thousands of square degrees of the Northern Hemisphere from the dedicated JAST/T80 telescope at the Observatorio Astrofísico de Javalambre (OAJ). The T80Cam is a camera with a field of view of 2 deg 2 mounted on a telescope with a diameter of 83 cm, and is equipped with a unique system of filters spanning the entire optical range (3500-10 000 Å). This filter system is a combination of broad-, medium-, and narrow-band filters, optimally designed to extract the rest-frame spectral features (the 3700-4000 Å Balmer break region, Hδ, Ca H+K, the G band, and the Mg b and Ca triplets) that are key to characterizing stellar types and delivering a low-resolution photospectrum for each pixel of the observed sky. With a typical depth of AB ∼21.25 mag per band, this filter set thus allows for an unbiased and accurate characterization of the stellar population in our Galaxy, it provides an unprecedented 2D photospectral information for all resolved galaxies in the local Universe, as well as accurate photo-z estimates (at the δ z/(1 + z) ∼ 0.005-0.03 precision level) for moderately bright (up to r ∼ 20 mag) extragalactic sources. While some narrow-band filters are designed for the study of particular emission features ([O ii]/λ3727, Hα/λ6563) up to z < 0.017, they also provide well-defined windows for the analysis of other emission lines at higher redshifts. As a result, J-PLUS has the potential to contribute to a wide range of fields in Astrophysics, both in the nearby Universe (Milky Way structure, globular clusters, 2D IFU-like studies, stellar populations of nearby and moderate-redshift galaxies, clusters of galaxies) and at high redshifts (emission-line galaxies at z ≈ 0.77, 2.2, and 4.4, quasi-stellar objects, etc.). With this paper, we release the first ∼1000 deg 2 of J-PLUS data, containing about 4.3 million stars and 3.0 million galaxies at r < 21 mag. With a goal of 8500 deg 2 for the total J-PLUS footprint, these numbers are expected to rise to about 35 million stars and 24 million galaxies by the end of the survey.Article published by EDP Sciences A176, page 1 of 25
Conditions in a black hole outburst The binary system V404 Cygni consists of a red giant star orbiting a black hole. In 2015, a surge of accretion by the black hole caused the surrounding plasma to brighten suddenly for the first time since 1989, briefly becoming the brightest x-ray source in the sky. Dallilar et al. combined observations from radio, infrared, optical, and x-ray telescopes taken during the outburst. They compared how fast the flux decayed at each wavelength, which allowed them to constrain the size of the emitting region, determine that the plasma within it cooled through synchrotron radiation, and measure the magnetic field around the black hole. Science , this issue p. 1299
Received (to be inserted by publisher); Revised (to be inserted by publisher); Accepted (to be inserted by publisher);The Canarias InfraRed Camera Experiment (CIRCE) is a near-infrared (1-2.5 micron) imager, polarimeter and low-resolution spectrograph operating as a visitor instrument for the Gran Telescopio Canarias 10.4-meter telescope. It was designed and built largely by graduate students and postdocs, with help from the UF astronomy engineering group, and is funded by the University of Florida and the U.S. National Science Foundation. CIRCE is intended to help fill the gap in near-infrared capabilities prior to the arrival of EMIR to the GTC, and will also provide the following scientific capabilities to compliment EMIR after its arrival: high-resolution imaging, narrowband imaging, high-time-resolution photometry, imaging polarimetry, low resolution spectroscopy. In this paper, we review the design, fabrication, integration, lab testing, and on-sky performance results for CIRCE. These include a novel approach to the opto-mechanical design, fabrication, and alignment.
We present cross-correlation analyses of simultaneous X-ray and near-infrared (near-IR) observations of the microquasar GRS 1915+105 during relativistic jetproducing epochs (X-ray class α and β). While previous studies have linked the large-amplitude IR flares and X-ray behaviors to jet formation in these states, our new analyses are sensitive to much lower-amplitude IR variability, providing more sensitive probes of the jet formation process. The X-ray to IR cross-correlation function (CCF) shows significant correlations which vary in form between the different X-ray states. During low/hard dips in both classes, we find no significant X-ray/IR correlation. During high-variability epochs, we find consistently significant correlations in both α and β classes, but with strong differences in the CCF structure. The high-variability α CCF shows strong anti-correlation between Xray/IR, with the X-ray preceding the IR by ∼ 13 ± 2s. The high-variability β state shows time-variable CCF structure, which is statistically significant but without a clearly consistent lag. Our simulated IR light curves, designed to match the observed CCFs, show variably-flickering IR emission during the class β highvariability epoch, while the class α can be fit by IR flickering with frequencies in the range 0.1 to 0.3 Hz, strengthening ∼10 s after every X-ray subflare. We interpret these features in the context of the X-ray-emitting accretion disk and IR emission from relativistic jet formation in GRS 1915+105, concluding that the CCF analysis places the origin in a synchrotron-emitting relativistic compact jet at a distance from the compact object of ∼0.02AU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.