Background: Laccases belong to multicopper oxidases, a widespread class of enzymes implicated in many oxidative functions in pathogenesis, immunogenesis and morphogenesis of organisms and in the metabolic turnover of complex organic substances. They catalyze the coupling between the four one-electron oxidations of a broad range of substrates with the four-electron reduction of dioxygen to water. These catalytic processes are made possible by the contemporaneous presence of at least four copper ion sites, classified according to their spectroscopic properties: one type 1 (T1) site where the electrons from the reducing substrates are accepted, one type 2 (T2), and a coupled binuclear type 3 pair (T3) which are assembled in a T2/T3 trinuclear cluster where the electrons are transferred to perform the O 2 reduction to H 2 O.
Extracellular laccases from submerged cultures of Coriolus versicolor BKM F-116, Panus tigrinus 8/18, Phlebia radiata 79 (ATCC 64658), Phlebia tremellosa 77-51 and from cultures of Pa. tigrinus 8/18, Ph. radiata 79 and Agaricus bisporus D-649 grown on wheat straw (solid-state fermentation) were purified. All enzymes from submerged cultures had a blue colour and characteristic absorption and EPR spectra. Laccases from the solid-state cultures were yellow-brown and had no typical blue oxidase spectra and also showed atypical EPR spectra. Comparison of N-terminal amino acid sequences of purified laccases showed high homology between blue and yellow-brown laccase forms. Formation of yellow laccases as a result of binding of lignin-derived molecules by enzyme protein is proposed.
Yellow and blue forms of laccase from solid-state and submerged cultures of Panus tigrinus were isolated. Both laccases had similar molecular masses and specific activity, but yellow laccase had no 'blue' maximum in the absorption spectrum. Blue laccase oxidized veratryl alcohol and a nonphenolic dimeric lignin model compound only in the presence of 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) as electron-transfer mediator. Yellow laccase catalyzed these reactions without any additional compounds. It is supposed that yellow laccase is formed as a result of blue laccase modification by products of lignin degradation. These compounds might play a role of natural electron-transfer mediators for the oxidation of non-phenolic substances, catalyzed by yellow laccase.
Extracellular laccases from submerged cultures of Coriolus versicolor BKM F-116, Panus tigrinus 8/18, Phlebia radiata 79 (ATCC 64658), Phlebia tremellosa 77-51 and from cultures of Pa. tigrinus 8/18, Ph. radiata 79 and Agaricus bisporus D-649 grown on wheat straw (solid-state fermentation) were purified. All enzymes from submerged cultures had a blue colour and characteristic absorption and EPR spectra. Laccases from the solid-state cultures were yellow-brown and had no typical blue oxidase spectra and also showed atypical EPR spectra. Comparison of N-terminal amino acid sequences of purified laccases showed high homology between blue and yellow-brown laccase forms. Formation of yellow laccases as a result of binding of lignin-derived molecules by enzyme protein is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.